首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Kuo IT  Huang YF  Chang HT 《Electrophoresis》2005,26(13):2643-2651
This paper describes the analysis of biologically active amines by capillary electrophoresis (CE) in conjunction with laser-induced native fluorescence detection. In order to simultaneously analyze amines and acids as well as to achieve high sensitivity, 10 mM formic acid solutions (pH < 4.0) containing silica nanoparticles (SiNPs) were chosen as the background electrolytes. With increasing SiNP concentration, the migration times for seven analytes decrease as a result of increase in electroosmotic flow (EOF) and decrease in their electrophoretic mobilities against EOF. A small EOF generated at pH 3.0 reveals adsorption of SiNPs on the deactivated capillary wall. The decreases in electrophoretic mobilities with increasing SiNP concentration up to 0.3x indicate the interactions between the analytes and the SiNPs. Having a great sensitivity (the limits of detection at a signal-to-noise ratio (S/N) = 3 of 0.09 nM for tryptamine (TA)), high efficiency, and excellent reproducibility (less than 2.4% of the migration times), this developed method has been applied to the analysis of urinal samples with the concentrations of 0.50 +/- 0.02 microM, 0.49 +/- 0.04 microM, and 74 +/- 2 microM for TA, 5-hydroxytryptamine, and tryptophan, respectively. The successful examples demonstrated in this study open up a possibility of using functional nanoparticles for the separation of different analytes by CE.  相似文献   

2.
Hsieh MM  Chang HT 《Electrophoresis》2005,26(1):187-195
On-line concentration and separation of biologically active amines and acids by capillary electrophoresis (CE) in conjunction with laser-induced fluorescence using an Nd:YAG laser at 266 nm under discontinuous conditions is presented. The suitable conditions for simultaneous analysis of amines and acids were: samples were prepared in a solution (pH* 3.1) consisting of 10 mM citric acid, 89% acetonitrile (ACN), and water; a capillary was filled with 1.5 M Tris-borate (TB) buffer (pH 10.0); and the anodic vial contained PTG10 buffer (pH* 9.0) that consists of 50 mM propanoic acid, Tris, 10% glycerol, and water. After injecting a large-volume sample, amines and acids were separately stacked at the front (cathodic side) and back (anodic side) of the acidic sample zone, mainly because of changes in their electrophoretic mobilities as a result of changes in pH, viscosity, and electric field when high voltage was applied. When the sample was injected at 15 kV for 360 s, the concentration limits of detection (LODs) for 5-hydroxytryptamine (5-HT) and 5-hydroxyindole-3-acetic acid (5-HIAA) were 0.27 and 0.31 nM, respectively, which are about 400- and 800-fold sensitivity improvements when compared to those injected at 1 kV for 10 s. For the analysis of amines, samples were prepared in 100 mM citric acid (pH* 1.8) containing 89% ACN and both the capillary and anodic vial were filled with 400 mM PTG20 (propanoic acid, Tris, 20% glycerol, and water) at pH* 4.5. Using a large injection volume (15 kV for 360 s), we achieved concentration LODs of 17 pM and 0.3 nM for tryptamine and epinephrine, which are about 5200- and 14,000-fold sensitivity improvements, respectively, in comparison with those injected at 1 kV for 10 s. The features of simplicity (no sample pretreatment), rapidity (12 min), and sensitivity for identification of amines and acids of interest in urine samples show diagnostic potential of the two approaches developed in this study.  相似文献   

3.
Separations of small ions were carried out under nonequilibrated conditions using capillaries treated with NaOH, HCl, or tris(hydroxymethyl)aminomethane (Tris) prior to analysis. For separations of benzoic acid isomers or acids and amines under weakly acidic conditions, capillaries flushed with 0.1 M NaOH and subsequently with running buffers prior to analysis were used. Separations of six benzoic acid isomers were accomplished in 4 min in 1 mM phosphate buffers, pH 4.01, containing 2.5 mM hydroxypropyl-beta-cyclodextrin. Without additives, the separation of biological amines and acids were also achieved in 10 min at pH 4.01. Capillaries treated with 0.1 M HCl prior to analysis were tested in separations of six phenols in 5 mM Tris solutions at pH 7.0. As a result of small electrophoretic mobilities of phenols against a small electroosmotic flow, resolution was optimized. We also found that reproducibility was improved using capillaries treated with HCl. The relative standard deviations of migration mobility of phenols were less than 1%, which were smaller than those obtained using capillaries treated with 0.1 M NaOH or Tris.  相似文献   

4.
Tseng WL  Chang HT 《Electrophoresis》2001,22(4):763-770
DNA separations were performed in poly(ethylene oxide) (PEO) solutions prepared in 100 mM Tris-boric acid (TB) buffers using a capillary filled with TB buffers with concentrations up to 2.5 M, pH 10.0. The electroosmotic flow (EOF) increased with increasing the concentration of TB buffers till 1.5 M as a result of decreasing PEO adsorption on the capillary wall. At high TB concentrations (> 1.5 M), the peaks corresponding to small DNA fragments (11 and 8 base pairs) became sharper and were detected. Relative standard deviations of the EOF coefficient and the migration times of the DNA fragments were all less than 1% using a capillary filled with TB buffers at concentrations higher than 1.5 M. When separations were performed at different pH values of PEO solutions and TB buffers, better results in terms of sensitivity, speed, and resolution were generally achieved. The fluorescence intensity of the 2176 bp fragment obtained at pH values of TB buffers/PEO solutions 10.0/8.2 was 27-fold of that at pH values 8.2/8.2. The enhancement was related to effects of pH and borate on fluorescence intensity, DNA conformation, stacking, and interactions with the capillary wall. Using a capillary filled with 400 mM TB buffers, pH 10.0, the separation of DNA (pBR 322/HaeIII digest, pBR 328/Bg/I digest and pBR 328/HinfI digest) in 1.5% PEO solutions prepared in 100 mM TB buffers, pH 9.0, at 375 V/cm was accomplished in less than 18 min.  相似文献   

5.
A simple and rapid method for the simultaneous analysis of amino acids has been developed. Amino acids were derivatised based on pre-capillary derivatisation with 1,2-naphthoquinone-4-sulfonate (NQS) in basic medium (pH 10.0) and developed reaction at 70 degrees C. Their derivatives were analysed by capillary zone electrophoresis (CZE). The parameters affecting CZE separation were investigated including buffer (pH, type and concentration), organic modifier and separation voltage. The optimum condition was 70 mmol L(-1) borate (pH 10.0) containing 10% acetonitrile, separation voltage of 12 kV, and sample injection (0.5 psi, 5s) and on-capillary detection at 240 nm. The separation of seven amino acids was achieved within 17 min. The detection limit was 1.0 mg L(-1) for all studied amino acids. The calibration curves were linear in the concentration range of 1.0-100.0 mg L(-1). The repeatability, intra-day and inter-day analysis were < or = 1.0% and < or = 2.0% for migration time and < or = 5.0% and 6.0% for peak area. The proposed method has been applied to several beverage samples with only a simple dilution and filtration treatment of sample before derivatisation and analysed by CZE.  相似文献   

6.
This paper reports the results of a study performed to investigate the dependence of the performance of protein separation by capillary zone electrophoresis (CZE) on the anionic component of the electrolyte solutions consisting of 20 mM N,N,N′,N′-tetramethyl-1,3-butanediamine (TMBD) titrated to either pH 4.0 or pH 6.5 with either a monoprotic or a polyprotic acid. With the exception of hydrochloric acid, the acids were selected among those commonly used as the constituents of the solutions employed for protein analysis by either HPLC or CZE. TMBD was chosen for its effectiveness at preventing the interactions of proteins with the inner wall of bare fused-silica capillaries. The performance of separations was evaluated using four basic model proteins having pI value and molecular mass ranging from 9.5 to 11.0 and from 12,400 to 25,000 Da, respectively. It is shown that the different acids used as the components of the background electrolyte solutions, all containing the same concentration of TMBD, affect to different extents both migration time and peak shape of the tested proteins. The performance displayed by the BGE containing phosphate ions is enhanced using TMBD in combination with diethylenetriamine, an aliphatic vicinal triamine having effective buffering capacity at pH 4.0 and capability at minimizing protein–capillary wall interactions. The reported experimental evidences are discussed based on the possible interactions that the phosphate ions are known to establish with both the protein molecules and the surface of bare fused-silica capillaries.  相似文献   

7.
A new approach for the analysis of large-volume naphthalene-2,3-dicarboxaldehyde (NDA) derivatives of amino acids by micellar electrokinetic chromatography (MEKC) in conjunction with a purple light-emitting diode-induced fluorescence detection is described. In order to optimize resolution, speed, and stacking efficiency, a discontinuous condition is essential for the analysis of NDA-amino acid derivatives. The optimum conditions use 2.0M TB (pH 10.0) buffer containing 40mM sodium dodecyl sulfate (SDS) to fill the capillary, deionized water to dilute samples, and 200mM TB (pH 9.0) containing 10mM SDS to prepare 0.6% poly(ethylene oxide) (PEO). Once high voltage is applied, PEO solution enters the capillary via electroosmotic flow and SDS micelles interact and thus sweep the NDA-amino acid derivatives having smaller electrophoretic mobilities than that of SDS micelles in the sample zone. When the aggregates between SDS micelles and NDA amino acid derivatives enter PEO zone, they are stacked due to decrease in electric field and increases in viscosity. Under the optimum conditions, the concentration and separation of 0.53-microL 13 NDA-amino acid derivatives that are negatively charged has been demonstrated by using a 60-cm capillary, with the efficiencies 0.3-9.0x10(5) theoretical plates and the LODs at signal-to-noise ratio 3 ranging from 0.30 to 2.76nM. When compared to standard injection (30-cm height for 10s), the approach allows the sensitivity enhancements over the range of 50-800 folds for the derivatives. The new approach has been applied to the analysis of a red wine sample, with great linearity of fluorescent intensity against concentrations (R(2)>0.98) and the RSD (three repetitive runs in one day) values of the migration times for the ten identified amino acids less than 2.8%.  相似文献   

8.
We describe simultaneous analysis of naphthalene-2,3-dicarboxaldehyde (NDA)-amino acid and amine derivatives by capillary electrophoresis in conjunction with light-emitting diode-induced fluorescence (LEDIF) detection using poly(ethylene oxide) (PEO) containing cetyltrimethylammonium bromide (CTAB). In the presence of CTAB and acetonitrile (ACN), adsorption of PEO on the capillary wall is suppressed, leading to generation of a fast and reproducible electroosmotic flow (EOF). In order to optimize separation resolution and speed, 100 mM Tris–borate solution (pH 7.0) containing 20 mM CTAB and 25% ACN was used to fill the capillary and to prepare 1.2% PEO that entered the capillary via EOF. The analysis of 14 NDA-amino acid and -amine derivatives by this approach is rapid (< 4 min), efficient ((0.9–6.4) × 105 theoretical plates), and sensitive (the LODs (S/N = 3) range from 9.5 to 50.5 nM). The RSD values (n = 5) of the migration times and peak heights of the analytes for the intraday analysis are less than 1.5 and 1.2%, respectively. We have validated the practicality of this approach by quantitative determination of 10 amino acids and amines in a beer samples within 4 min.  相似文献   

9.
10.
This paper describes the analysis of large DNA fragments at pH > 10.0 by capillary electrophoresis (CE) in the presence of electroosmotic flow (EOF) using hydroxyethylcellulose (HEC) solution. HEC solution in the anodic reservoir enters the capillaries filled with high-pH buffer by EOF after sample injection. With respect to resolution, sensitivity, and speed, separation conducted under discontinuous conditions (different pH values of HEC solutions and buffer filling the capillary) is appropriate. Using HEC solution at concentrations higher than its entanglement threshold ensures a good separation of large DNA fragments in the presence of EOF at high pH. In addition to pH and HEC, the electrolyte species, dimethylamine, methylamine, and piperidine, play different roles in determining the resolution. The separation of DNA fragments ranging in size from 5 to 40 kilo base pairs was completed in 6 min using 1.5% HEC prepared in 20 mM methylamine-borate, pH 12.0, and the capillary filled with 40 mM dimethylamine-borate, pH 10.0. In comparison, this method allows faster separations of large DNA fragments compared with that conducted in the absence of EOF using dilute HEC solutions.  相似文献   

11.
The separation and migration behavior of six isomeric dichlorophenols (DCPs) in cyclodextrin‐modified capillary zone electrophoresis (CD‐CZE) using a phosphate‐borate buffer at alkaline pH with β‐CD and hydroxypropyl‐β‐CD (HP‐β‐CD) as electrolyte modifiers were investigated. The influence of buffer pH and the concentration of β‐cyclodextrins were examined. The results indicate that baseline separation of six isomeric DCPs can be achieved with addition of β‐CD concentration in the range of 2.0‐10 mM or HP‐β‐CD concentration in the range of 4.0‐10 mM at pH 10.0. Binding constants of DCPs to β‐CDs were evaluated for a better understanding of the interaction of DCPs with β‐CDs.  相似文献   

12.
We have demonstrated the analysis of aristolochic acids (AAs) that are naturally occurring nephrotoxin and carcinogen by capillary electrophoresis in conjunction with laser-induced fluorescence detection (CE-LIF). Owing to lack of intrinsic fluorescence characteristics of oxidized AAs (OAAs), reduction of the analytes by iron powder in 10.0 mM HCl is required prior to CE analysis. The reduced AAs (RAAs) exhibit fluorescence at 477 nm when excited at 405 nm using a solid-state blue laser. By using 50.0 mM sodium tetraborate (pH 9.0) containing 10.0 mM SDS, the determination of AA-I and AA-II by CE-LIF has been achieved within 12 min. The CE-LIF provides the LODs of 8.2 and 5.4 nM for AA-I and AA-II, respectively. The simple CE-LIF method has been validated by the analysis of 61 Chinese herbal samples. Prior to CE analysis, OAAs were extracted by using 5.0 mL MeOH, and then the extracts were subjected to centrifugation at 3,000 rpm for 5 min. After reduction, extraction, and centrifugation, the supernatants were collected and subjected to CE analysis. Of the 61 samples, 14 samples contain AA-I and AA-II, as well as 10 samples contain either AAI or AAII. The relative standard deviation (RSD) values of the migration times for AA-I and AA-II are less than 2.5% and 2.1% for three consecutive measurements of each sample. The RSD values for the peak heights corresponding to AA-I and AA-II in most samples are about 8.0% and 10.0%, respectively. The result shows that the present CE-LIF approach is sensitive, simple, efficient, and accurate for the determination of AAs in real samples.  相似文献   

13.
14.
Surfactants such as dioctadecyldimethylammonium bromide (DODAB) form semi-permanent coatings that effectively prevent adsorption of cationic proteins onto the fused silica capillary in capillary electrophoresis (CE). The bilayer coating is generated by flushing the capillary with a 0.1 mM surfactant solution. However, formation of the bilayer is strongly dependent on the coating electrolyte. The effect of counter-ions, electrolyte concentrations and buffer co-ions were monitored based on: the separation of basic model proteins; the adsorption kinetics of DODA+ onto fused silica; and dynamic light scattering (DLS) to determine vesicle size. Low concentrations (≤10.0 mM) and/or weakly associating buffers such as phosphate (pH 3.0), acetate (pH 4.0) and chloride should be used for DODAB coating solutions. Dissolving the surfactant in strongly associating electrolyte, such as phosphate at pH 7.0, results in poor coating of the capillary surface. Effective cationic bilayer coatings are formed if the buffer conditions favor formation of vesicles with diameters < 300 nm. Monitoring turbidity at 400 nm provides a convenient means of verifying vesicle diameter variation of <5 nm; that is, that the coating solution is effective.  相似文献   

15.
For the first time, citrate-capped gold nanoparticles (citrate-AuNPs) have been used for the selective extraction of indoleamines – 5-hydroxytryptophan (5-HTP), tryptophan (Trp), tryptamine (TA), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) – prior to their analysis by capillary electrophoresis/laser-induced native fluorescence (CE/LINF). The extinction spectra obtained for the citrate-AuNPs in the presence of indoleamines revealed that 5-HTP, 5-HT, and 5-HIAA were extracted mainly because of van der Waals interactions between the indole ring and the citrate-AuNPs (hydrophobic surface), while 5-HT and TA were extracted by electrostatic attractions between the amine group of the indoleamines and the citrate ligands adsorbed on the AuNP surface. The extracted indoleamines could be liberated from the AuNP surface by the addition of high concentrations of 2-mercaptoethanol (2-ME), which binds strongly to the AuNPs. The sensitivity of this method to indoleamines could be significantly enhanced by increasing the AuNP concentration, incubation time, and sample volume. Under optimal extraction and separation conditions, the combination of NP-based extraction and CE-LINF provided 48-, 4077-, 985-, 920-, and 4030-fold improvements in the limits of detection (signal-to-noise ratio of 3) for 5-HTP, Trp, TA, 5-HT, and 5-HIAA as compared to the analysis of five indoleamines by CE-LINF. In addition, this proposed method was successfully used for the determination of TA and 5-HT in urine.  相似文献   

16.
In this study, a new capillary electrophoresis (CE) method is described originally for the sensitive and selective determination of short-chain aliphatic amines in biological samples. These amines were converted into their N-hydroxysuccinimidyl fluorescein-O-acetate (SIFA) derivatives and measured by micellar electrokinetic capillary chromatography with laser-induced fluorescence detection. The derivatization conditions and separation parameters for the aliphatic amines were optimized in detail. The SIFA-labeled amines were fully separated within 8.5 min using 25 mM pH 9.6 boric acid electrolyte containing 60 mM sodium dodecyl sulfate (SDS). The parameters of validation such as linearity of response, precision and detection limits were determined. The detection limits were obtained in the range from 0.02 to 0.1 nM, which was the lowest value reported by CE methods. The developed method was successfully employed to monitor aliphatic amines in serum and cells samples. After comparison of other CE methods using different fluorescent probes, the present method represents a powerful tool for the trace determination of aliphatic amines in complex biological samples.  相似文献   

17.
新型共聚物涂层毛细管电泳柱及其分离蛋白质的研究   总被引:2,自引:0,他引:2  
 研究新型共聚物——ZB系列表面键合剂在毛细管电泳中的应用。采用物理吸附的方法制备了ZB-004,ZB-014,ZB-016等3种涂层毛细管柱,在pH3~5范围内,3种涂层均能有效地降低管壁对蛋白质的吸附作用和电渗流,其中亲水性较弱的ZB-004涂层的分离性能最好。在pH<5时,涂层具有较高的稳定性和良好的分析重复性,但在更高的pH值条件下,仍然存在着峰形畸变和电渗流迅速增加的现象。  相似文献   

18.
A capillary zone electrophoresis (CZE)-potential gradient detection (PGD) method coupled with field-amplified sample injection was developed to determine alkali metal, alkaline-earth metal, nickel, lead and ammonium ions. The capillary surface was coated with dialkylimidazolium-based ionic liquid and thus the electroosmotic flow (EOF) of the capillary was reversed. The buffer composed of 7.5 mM lactic acid, 0.6 mM 18-crown-6, 12 mM alpha-cyclodextrin (alpha-CD); it was adjusted to pH 4.0 by 1-hexyl-3-methylimidazolium hydroxide. The 11 cations were baseline separated within 14 min with 5.1-18.9 x 10(4) plates (for 40-cm-long capillary) in separation efficiency, and the detection limits were in the range of 0.27-7.3 ng/ml. The method showed good reproducibility in terms of migration time with RSD < or = 0.90% for run-to-run and < or = 1.65 for day-to-day assessment.  相似文献   

19.
Wang J  Chen G 《Talanta》2003,60(6):1239-1244
A method based on microchip capillary electrophoresis with amperometric detection was developed for the rapid separation and direct detection of oxidizable aromatic amino acids (without prior derivatization). The working electrode was a thick-film carbon strip electrode positioned opposite the outlet of the separation channel. Factors influencing the separation and detection processes were examined and optimized. The five aromatic amino acids, tyrosine, 5-hydroxytryptophan, tryptophan, p-aminobenzoic acid, and m-aminobenzoic acid, can be well separated within 5 min using a separation voltage of 2000 V and a 25 mM phosphate buffer (pH 7.0) run buffer containing 50 mM sodium dodecylsulfate. Most favorable amperometric detection was obtained at +0.95 V. Linear calibration plots are observed for micromolar concentrations of the oxidizable amino acids. The new protocol offers good stability and for reproducibility, with relative S.D. of less than 5% for both migration times and peak currents (n=8). It should be useful for the analysis of aromatic amino acids, as desired for life sciences.  相似文献   

20.
Cao L  Wang H  Zhang H 《Electrophoresis》2005,26(10):1954-1962
The analytical potential of a fluorescein analogue, 6-oxy-(N-succinimidyl acetate)-9-(2'-methoxycarbonyl) fluorescein (SAMF), for the first time synthesized in our laboratory, as a labeling reagent for the labeling and determination of amino compounds by capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection was investigated. Biogenic monoamines and amino acids were chosen as model analytes to evaluate the analytical possibilities of this approach. The derivatization conditions and separation parameters for the biogenic amines were optimized in detail. The derivatization was performed at 30 degrees C for 6 min in boric acid buffer (pH 8.0). The derivatives were baseline-separated in 15 min with 25 mM boric acid running buffer (pH 9.0), containing 24 mM SDS and 12.5% v/v acetonitrile. The concentration detection limit for biogenic amines reaches 8 x 10(-11) mol.L(-1) (signal-to-noise ratio = 3). The application of CE in the analysis of the SAMF-derivatized amino acids was also exploited. The optimal running buffer for amino acids suggested that weak acidic background electrolyte offered better separation than the basic one. The proposed method was applied to the determination of biogenic amines in three different beer samples with satisfying recoveries varying from 92.8% to 104.8%. Finally, comparison of several fluorescein-based probes for amino compounds was discussed. With good labeling reaction, excellent photostability, pH-independent fluorescence (pH 4-9), and the resultant widely suited running buffer pH, SAMF has a great prospect in the determination of amino compounds in CE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号