首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The sublimation pressure of chromium trichloride was measured by the static method with a quartz membrane-gauge manometer in the temperature range of 875–1230 K. An approximating equation for the sublimation pressure vs. temperature was found. The enthalpy (259.4±4 kJ mol–1) and the entropy (224.2±3.5 J mol–1 K–1) of sublimation at 298 K were calculated. For the process 2 CrCl3(g) + Cl2(g) = 2 CrCl4(g), the following values were obtained: r H°298 = –207.1±11.6 kJ mol–1 and r S°298 = –173.6±10 5 J mol–1 K–1.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1561–1564, August, 2004.  相似文献   

2.
Summary Complexes [NiL2]X2·nH2O (L=diethylenetriamine; n=O when X=CF3CO2 or CCl3CO2; n=1 when X=Cl or Br, and n=3 when X=0.5SO4 or 0.5SeO4) and NiLX2·nH2O (n=1 when X=Cl or Br; n=3 when X=0.5SO4 or 0.5SeO4) have been synthesised and investigated thermally in the solid state. NiLSO4 was synthesised pyrolytically in the solid state from [NiL2]SO4·[NiL2]X2 (X=Cl or Br) undergo exothermic irreversible phase transitions (242–282° C and 207–228° C; H=–11.3 kJ mol–1 and –1.9 kJ mol–1 for [NiL2]Cl2 and [NiL2]Br2, respectively). [NiL2]-phenomenon (158–185° C; H=2.0 kJ mol–1). NiLX2· nH2O (n=1 or 3) undergo simultaneous deaquation-isomerisation upon heating. All the complexes possess octahedral geometry.  相似文献   

3.
Summary The kinetics of formation and dissociation of the binuclear complex of Be2+ with 3-nitrosalicylatopentaamminecobalt(III) have been investigated in the 20–40 and 25–40 °C ranges (I = 0.3 mol dm –3), respectively. At 25 °C the rate and activation parameters for the formation of the binuclear species are: k f = 26.9 × 102 dm3mol–1s–1, H = 104 ± 7kJ mol–1 S = 91 ± 22JK–1mor–1.The rate constant, activation enthalpy and activation entropy for the acid-catalysed dissociation of the binuclear species are: 1.25 ± 0.08dm3mol –1 at 25 °C, 53 ± 3kJ mol–1 and - 67 ± 9 J K –1 mol–1, respectively. The formation of the binuclear species is chelation controlled while the dechelation is acid catalysed.  相似文献   

4.
The kinetics of acid-catalyzed hydrolysis of the [Co(en)(L)2(O2CO)]+ ion (L = imidazole, 1-methylimidazole, 2-methylimidazole) follows the rate law –d[complex]/dt = {k 1 K[H+]/(1 + K[H+])}[complex] (15–30 or 25–40 °C, [H+] = 0.1–1.0 M and I = 1.0 M (NaClO4)). The reaction course consists of a rapid pre-equilibrium protonation, followed by a rate determining chelate ring opening process and subsequent fast release of the one-end bound carbonato ligand. Kinetic parameters, k 1 and K, at 25 °C are 5.5 × 10–2 s–1, 0.44 M–1 (ImH), 5.1 × 10–2 s–1, 0.54 M–1 (1-Meim) and 3.8 × 10–3 s–1, 0.74 M–1 (2-MeimH) respectively, and activation parameters for k 1 are H1 = 43.7 ± 8.9 kJ mol–1, S1 = –123 ± 30 J mol–1 deg–1 (ImH), H1 = 43.1 ± 0.3 kJ mol–1, S1 = –125 ± 1 J mol–1 deg–1 (1-Meim) and H1 = 64.2 ± 4.3 kJ mol–1, S1 = –77 ± 14 J mol–1 deg–1 (2-MeimH). The results are compared with those for similar cobalt(III) complexes.  相似文献   

5.
Summary The reversible complex formation between 2-(2-aminoethyl) benzimidazole (AEB) and nickel(II) was studied by stopped flow spectrophotometry at I = 0.30 mol dm–3. Both the neutral and monoprotonated form of AEB reacted to give the NiAEB2+ chelate. At 25 °C, the rates and activation parameters for the reactions NiII + AEB NiAEB2+ and NiII + AEBH+ NiAEB2+ + H+ are k f L(dm–3 mol–1 s–1) = (2.17 ± 0.24) × 103, H (kJ mol–1) = 40.0 ± 0.8, S (JK–1 mol–1) = – 47 ± 3 and k inff pHL (dm3 mol–1 s–1) = 33 ± 10, H (kJ mol–1) = 42.0 ±2.7, S (JK–1 mol–1) = – 72 ± 9. The dissociation of NiAEB2+ was acid catalysed and k obs for this process increased linearly with [H+] in the 0.01–0.15 mol dm–3 (10–30 °C) range with k H(dm3 mol–1s–1) (25 °C) = 329 ± 6, H (kJ mol–1) = 40 ± 2 and S (JK–1 mol–1) = – 61 ± 8. The results also indicated that the formation of NiAEB2+ involves a chelation-controlled, rate-limiting process. Analysis of the S ° data for the acid ionisation of AEBH inf2 p2+ and the formation of NiAEB2+ showed that the bulky AEBH+ ion has a solvent structure breaking effect as compared to AEB [s aqS ° (AEBH+) – s aq ° (AEB) = 69 JK–1 mol–1], while AEBH inf2 p2+ is a solvent ordering ion relative to NiAEB2+ [s aq° (NiAEB2+) – ovS aq ° (AEBH inf2 p2+ ) = 11 JK–1 mol–1].Author to whom all correspondence should be directed.  相似文献   

6.
The standard molar enthalpies of formation f H m ° (cr) at the temperature T = 298.15 K were determined using combustion calorimetry for di-tert-butyl-methanol (A), di-tert-butyl-iso-propyl-methanol (B), and di-phenyl-methyl-methanol (C). The standard molar enthalpies of sublimation cr 8 H m ° of these compounds and of di-phenyl-methanol (D) were obtained from the temperature variation of the vapor pressure measured in a flow system. Molar enthalpies of fusion cr 1 H m ° of the compounds A–D and of tri-phenyl-methanol (E) were measured by differential scanning calorimeter (DSC). From these data and data available from the literature, the following standard molar enthalpies of formation in gaseous phase f H m ° (g) for A, (–397.0 ± 1.2); B, (–418.1 ± 2.3); C, (–34.2 ± 1.3); and D, (0.9 ± 2.1) kJ · mol–1 were derived, which correspond to strain enthalpies (H S) of 46.1, 114.7, 8.1, and 5.0 kJ · mol–1, respectively.  相似文献   

7.
Ibuprofen has been subjected to a TG/DTA study over the temperature range of 30 to 350°C in a flowing atmosphere of nitrogen. The heating rate and the flow rate were varied. The DTA shows a melting at around 80°C and boiling point range from 212 to 251°C depending upon the heating rate. The mass loss in the TG data confirms the evaporation of Ibuprofen between them.p. and the normalb.p. Evaporation is limited to the surface area, which is a constant in the crucible holding the sample. The DTG plot shows clearly a zero order process which is consistent with the process of evaporation. The enthalpy of vaporization (vap H) calculated by Trouton's rule is found to be in the range of 42.7–46.1 kJ mol–1. TheE act for the zero order reaction is in the range of 81.8–87.0 kJ mol–1 and is calculated by use of the derivative method. The value ofE act is about twice that for H vap in Ibuprofen and differs from other compounds, whereE act H vap . It is suggested that the Ibuprofen molecule is existing as a dimer in the liquid state and dissociates to a monomer in the vapor state.  相似文献   

8.
Summary Base hydrolysis of methyl ethylenediaminemonoacetate has been studied at I=0.1 mol dm–3 (NaClO4) over the pH range 7.4–8.8 at 25 °C. The proton equilibria of the ligand can be represented by the equations, where E is the free unprotonated ester species. Values of pK1 and pK2 are 4.69 andca. 7.5 at 25° (I=0.1 mol dm–3). For base hydrolysis of EH+, kOH=1.1×103 dm3 mol–1 s–1 at 25 °C. The species E is shown to undergo lactamisation to give 2-oxopiperazine (klact ca. 1×10–3 s–1) at 25 °C. Formation of the lactam is indicated both by u.v. measurements and by isolation and characterisation of the compound.Base hydrolysis of the ester ligand in the complex [CuE]2+ has been studied over a range of pH and temperature, k OH 25 =9.3×104 dm3 mol–1 s–1 with H=107 kJ mol–1 and S 298 =209 JK–1 mol–1. Base hydrolysis of [CuE]2+ is estimated to be some 1055 fold faster than that of the free ester ligand. The results suggest that base hydrolysis occursvia a chelate ester species in which the methoxycarbonyl group of the ligand is bonded to copper(II).  相似文献   

9.
Summary [Ni(dien)2]X2·nH2O (dien=diethylenetriamine; n=0, X=NO3 or CF3SO3; n=0.5, X=ClO4 or BF4 and n=2, X=CF3SO3) complexes have been prepared and investigated thermally in the solid state. [Ni(dien)2](NO3)2 (1) and [Ni(dien)2](CF3SO3)2 (2) undergo endothermic irreversible phase transitions (209–247°C and 184–205°C; H=5.6 kJ mol–1 and 7.7 kJ mol–1 for (1) and (2), respectively). [Ni(dien)2](ClO4)2·0.5H2O (3) shows an endothermic irreversible phase transition after deaquation (201–216°C; H=7.7 kJ mol–1). [Ni(dien)2](BF4)2·0.5H2O also shows an endothermic irreversible phase transition after deaquation, accompanied by partial decomposition. All the complexes possess octahedral geometry with the ligands arranged meridionally. The phase transitions are explained in terms of conformational changes of the triamine chelate rings.Author to whom all correspondence should be directed. Supplementary data available: i.r. spectra (Table 4) and x-ray diffraction patterns (Table 5).  相似文献   

10.
The standard molar enthalpies of formation f H m ° (l) at the temperature T = 298.15 K were determined using combustion calorimetry for N-methylpiperidine (A), N-ethylpiperidine (B), N-propylpiperidine (C), N-butylpiperidine (D), N-cyclopentylpiperidine (E), N-cyclohexylpiperidine (F), and N-phenylpiperidine (G). The standard molar enthalpies of vaporization l g H m ° of these compounds were obtained from the temperature variation of the vapor pressure measured in a flow system. From these data the following standard molar enthalpies of formation in gaseous phase f H m ° (g) were derived for: A –(61.39 ± 0.88); B –(88.1 ± 1.3); C –(105.81 ± 0.66); D –(126.2 ± 1.3); E ( –88.21 ± 0.75); F –(135.21 ± 0.94); G (70.3 ± 1.4) kJ · mol–1. They are used to determine the strain enthalpies of the cyclic amines A–G. The N-alkylated piperidine rings have been found to be about strainless.  相似文献   

11.
Summary G2 theory is shown to be reliable for calculating isodesmic and homodesmotic stabilization energies (ISE and HSE, respectively) of benzene. G2 calculations give HSE and ISE values of 92.5 and 269.1 kJ mol–1 (298 K), respectively. These agree well with the experimental HSE and ISE values of 90.5±7.2 and 268.7±6.3 kJ mol–1, respectively. We conclude that basis set superposition error corrections to the enthalpies of the homodesmotic or isodesmic reactions are not necessary in calculations of the stabilization energies of benzene using G2 theory. The calculated values of the enthalpies of formation of such molecules containing multiple bonds such as benzene ands-trans 1,3-butadiene, which are found from the enthalpies of isodesmic and homodesmotic reactions rather than of atomization reactions, demonstrate good performance of G2 theory. Estimates of theH f o value for benzene from the G2 calculated enthalpies of homodesmotic reaction (2) and isodesmic reaction (3) are 80.9 and 82.5 kJ mol–1 (298 K), respectively. These are very close to the experimentalH f o value of 82.9±0.3 kJ mol–1. TheH f o value ofs-trans 1,3-butadiene calculated using the G2 enthalpy of isodesmic reaction (4) is 110.5 kJ mol–1 and is in excellent agreement with the experimentalH f o value of 110.0±1.1 kJ mol–1.  相似文献   

12.
The title reaction has been studied spectrophotometrically in aqueous medium as a function of [substrate complex], [ligand], pH and temperature at constant ionic strength. At the physiological pH (7.4) the interaction with azide shows two distinct consecutive steps, i.e., it shows a non-linear dependence on the concentration of N3 ; both processes are [ligand]-dependent. The rate constant for the processes are: k 110–3 s–1 and k 210–5 s–1. The activation parameters calculated from Eyring plots are: H 1 = 14.8 ± 1 kJ mol–1, S 1 = –240 ± 3 J K–1 mol–1, H 2 = 44.0 ± 1.5 kJ mol–1 and S 2 = –190 ± 4 J K–1 mol–1. Based on the kinetic and activation parameters an associative interchange mechanism is proposed for the interaction process. From the temperature dependence of the outersphere association equilibrium constant, the thermodynamic parameters calculated are: H 1 0 = 4.4 ± 0.9 kJ mol–1, S 1 0 = 64 ± 3 J K–1 mol–1 and H 2 0 = 14.2 ± 2.9 kJ mol–1, S 2 0 = 90 ± 9 J K–1 mol–1, which gives a negative G 0 value at all temperatures studied, supporting the spontaneous formation of an outersphere association complex.  相似文献   

13.
Summary Kinetic studies of the anation of the title complex by NO 2 show that it occurs in a stepwise manner leading to thecis-dinitro-complex both steps having a common rate equation:-d[complex]/dt = a[NO 2 ]/{[NO 2 ] + b}. The variation ofpseudo-first-order rate constant (kobs) with [NO 2 ] indicates that the reaction proceeds through ion-pair interchange path. Activation parameters calculated by the Eyring equation are: H 1 = (65±7) kJ mol–1 and S 1 = (–82±11) JK–1 mol–1 for the formation of [Co(NH3)4(NO2)(H2O)]2+, and H 2 = (97±1) kJ mol–1 and S 2 = (6±2) JK–1 mol–1 for the formation of [Co(NH3)4(NO2)2]+. Anation of the title complex by N 3 at pH 4.1 also occurs in a stepwise manner ultimately producing thecis-diazido species. At a fixed pH the reaction shows a first-order dependence on [N 3 ] for each step. pH-variation studies at a fixed [N 3 ] show that the hydroxoaqua-form of the complex reactsca. 16 times faster than the diaqua form. Evidence is presented for an ion-pair preequilibrium at high ionic strength (I = 2.0 mol dm–3). Activation parameters obtained from temperature variation studies are: H 1 = (121±1) kJ mol–1 and S 1 = (104±3) JK–1 mol–1 (for the first step anation), and H 2 = (111±2) kJ mol–1 and S 2 = (74±9) JK–1 mol–1 (for the second step anation). The reaction ofcis-tetraaminediaquacobalt(III) ion with salicylate (HSal) has been studied in aqueous acidic medium in the temperature range 39.8–58.2°C. The reaction is biphasic corresponding to the anation of two salicylate ions. The kinetic results for the first phase reaction are compatible with the equation: kobs = kIPQ[HSal]/(1 + Q[HSal]) where Q denotes ion-pair formation constant and kIP is the first-order rate constant for the interchange reaction. The activation parameters obtained from the temperature dependence of rate are: H = (138±3) kJ mol–1 and S = (135±4) JK–1 mol–1. The reaction seems to take place by a dissociative interchange mechanism.  相似文献   

14.
The solubility property of Zn(NO3)2–Thr–H2O system (Thr—threonine) at 25°C in the entire concentration range has been investigated by the phase equilibrium semimicromethod. The corresponding phase diagram and refractive index diagram were constructed. From the phase equilibrium results, the incongruently soluble compounds of Zn(Thr)(NO3)2 · 2H2O, Zn(Thr)2(NO3)2 · H2O, and Zn(Thr)3(NO3)2 · H2O were synthesized and characterized by IR, XRD, TG–DTG, chemical and elemental analyses. The constant-volume combustion energies of the compounds, c E, determined by precision rotating bomb calorimeter at 298.15 K, were –6266.88 ± 3.72, –9263.28 ± 2.23, and –11 423.11 ± 6.81 J/g, respectively. The standard enthalpies of combustion for these compounds, c H m ° (complex, s., 298.15 K), were calculated as –2147.40 ± 1.28, –4120.83 ± 0.99, and –6444.68 ± 3.85 kJ/mol and the standard enthalpies of formation, f H m ° (complex, s., 298.15 K), are –1632.82 ± 1.43, –1885.55 ± 1.50, and –2770.25 ± 4.21 kJ/mol. The enthalpies of dissolution of the complexes in a medium of simulated human gastric juice (37°C, pH 1, in the solution of hydrochloric acid), dis H m ° (complex, s., 310 K), which were also measured by a microcalorimeter to be 13.36 ± 0.06, 15.53 ± 0.06, and 17.04 ± 0.05 kJ/mol, respectively.  相似文献   

15.
Summary The kinetics of the first step of base hydrolysis oftrans-bis(Hmalonato)bis(ethylenediamine)cobalt(III) [malH=HO2CCH2CO 2 ] has been investigated in the 15–35° C range, I=0.3 mol dm–3 (NaClO4) and [OH]=0.015–0.29 mol dm–3. The rate law is given by –d In[complex]T/dt=k1[OH] and at 30° C, k1=8.5×10–3 dm3 mol–1s–1, H=117.0±7.0 kJ mol–1 and S=99.0±24.0 JK–1mol–1. The activation parameters data are consistent with the SN1 cb mechanism.  相似文献   

16.
Summary The pentadentate macrocycle 1,4,7,10,13-penta-azacyclo-hexadecane [16]aneN5=(3)=L} has been prepared and a variety of copper(II), nickel(II) and cobalt(III) complexes of the ligand characterised. The copper complex [CuL](ClO4)2, on the basis of its d-d spectrum, appears to be square pyramidal, while [NiL(H2O)](ClO4)2 is octahedral. The copper(II) and nickel(II) complexes dissociate readily in acidic solution and these reactions have been studied kinetically. For the copper(II) complex, rate=kH[complex][H+]2 with kH =4.8 dm6 mol–2s–1 at 25 °C and I=1.0 mol dm–3 (NaClO4) with H=43 kJ mol–1 and S 298 =–89 JK–1 mol–1. Dissociation rates of the copper(II) complexes increase with ring size in the order: [15]aneN5 < [16]aneN5 < [17]aneN5. For the dissociation of the nickel(II) complex, rate=kH[Complex][H+] with kH=9.4×10–3 dm3mol–1 s–1 at 25 °C and I =1.0 mol dm–3 (NaClO4) with H=71 kJ mol–1 and S 298 =–47 JK–1mol–1.The cobalt(III) complexes, [CoLCl](ClO4)2, [CoL(H2O)]-(ClO4)3, [CoL(NO2)](ClO4)2, [CoL(DMF)](ClO4)3 (DMF=dimethylformamide) and [CoL(O2CH)](ClO4)2 have been characterised. The chloropentamine [CoCl([16]aneN5)]2+ undergoes rapid base hydrolysis with kOH=1.1× 105dm3 mol–1s–1 at 25°C and I=0.1 mol dm–3 (H=73 kJ mol–1 and S 298 =98 JK–1 mol–1). Rapid base hydrolysis of [CoL(NO2)]2+ is also observed and the origins of these effects are considered in detail.  相似文献   

17.
Summary The kinetics of oxygen-transfer from [MoO2(Et-L-cys)2] to PPh3 and the reaction between [Mo2O3(Et-L-cys)4] and O2 in benzene solution have been investigated using spectrophotometric techniques between 25 and 40°. The rate laws-d[Mo6+]/dt = k1[Mo6+][PPh3] with k1 (at 35°) = 2.95×10–4dm3mol–1s–1 and -d[Mo5+]/dt = 2k3[Mo5+][O2] with k3 (at 35°) = 6.3×10–2 dm3mol–1s–1 account for the kinetic data obtained with activation parameters (at 35°) of H = 46 kJ mol–1, S = –153 JK–1mol–1, and H = 50.8 kJ mol–1, S = –95 JK–1 mol–1 respectively.  相似文献   

18.
Summary Boehmite powders were prepared by controlled hydrolysis of aluminium isopropoxide solution and recrystallisation in hot water; these were cylinders (fibres) of lengths (I 0) = 0.06 to 0.10m. The dissolution of dilute suspensions of these powders in well-stirred sodium hydroxide solutions was studied at 35 ° to 65 °C. Reaction solid and solution were analysed after different times by chemical and physical methods.Reaction occurred by three-directional dissolution of the cylinders: the reactions of the first (non-aggregated) thirty percent material were four-third order w. r. t. powder weight (and second order w. r. t. powder surface area). The initial rate constantsk wi (g hr–1) for reactions with sodium hydroxide of unit mean ionic activity at 20 °C varied from 0.012 to 0.040. Rate constants increased linearly with the mean ionic activity of the hydroxide solution and exponentially with reciprocal temperature, five-six times for 15 °C temperature rise. Energies of activation varied from 115–125 kJ mole–1.
Zusammenfassung Boehmit-Pulver wurden durch kontrollierte Hydrolyse von Aluminiumisopropoxid-Lösungen hergestellt und in heißem Wasser rekristallisiert. Die Kristalle bildeten Zylinder (Fasern) mit einer Länge von 0,06–0,10m. Die Auflösung dieser Präparate in verdünnten Suspensionen in Natriumhydroxidlösungen wurde bei 35–65 °C untersucht. Festkörper und Lösung wurden nach vorgegebenen Zeiten analysiert.Die Lösung erfolgt in einer 3dimensionalen Reaktion der Zylinder. Die Anfangsgeschwindigkeitskonstanten für Reaktionen mit Natriumhydroxidlösungen bei 20 °C variierte von 0,012 bis 0,040 (g h–1). Die Geschwindigkeitskonstanten steigen linear mit der Ionenaktivität der Hydroxidlösungen und exponentiell mit der reziproken Temperatur. Aktivierungsenergien liegen zwischen 115 und 125 kJ mol–1.


With 3 figures and 1 table  相似文献   

19.
Thermogravimetric (t.g.) and differential scanning calorimetric (d.s.c.) data have been used to study metal–amino acid interactions in adducts of general formula MnCl2 · ngly (gly = glycine, n = 0.7, 2.0, 4.0 and 5.0). All the prepared adducts exhibit only a one step mass loss associated with the release of glycine molecules, except for the 0.7gly adduct, which exhibits two glycine mass loss steps. From d.s.c. data, the enthalpy values associated with the glycine mass loss can be calculated: MnCl2 · 0.7gly = 409 and 399 kJ mol–1, MnCl2 · 2.0gly = 216 kJ mol–1, MnCl2 · 4.0gly = 326 kJ mol–1 and MnCl2 · 5.0gly = 423 kJ mol–1, respectively. The enthalpy associated with the ligand loss, plotted as function of the number of ligands for the n = 2.0, 4.0 and 5.0 adducts, gave a linear correlation, fitting the equation: H (ligand loss)/kJ mol–1 = 67 × (number of ligands, n) + 76. A similar result was achieved when the enthalpy associated with the ligand loss was plotted as a function of the a(COO) bands associated with the coordination through the carboxylate group, 1571, 1575 and 1577 cm–1, respectively, for the n = 2.0, 4.0 and 5.0 adducts, giving the equation H (ligand loss) /kJ mol–1 = 33.5 × a(COO) /cm–1 – 52418.5. This simple equation provides evidence for the enthalpy associated with the ligand loss being very closely related to the electronic density associated with the metal–amino acid bonds.  相似文献   

20.
Summary The metal-ylide-initiated radical polymerization of methylmethacrylate (MMA) at 85±0.1°C using dioxan as inert solvent was investigated by dilatometry. Kinetic parameters, average rate of polymerization (R p ) and reaction orders with respect to initiator and monomer have been determined and are 0.33±0.1 and 1.33, respectively. Polymerization was inhibited by hydroquinone and non-polar solvents, but is favoured by polar solvent. The activation energy (E) and k p 2 /kt values were 64.0 kJ mol–1 and 3.3×10–2 l mol–1 s–1 respectively. A suitable mechanism consistent with the observed kinetic data is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号