首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We prove that: (i) a pathwise connected, Hausdorff space which has a continuous selection is homeomorphic to one of the following four spaces: singleton, [0,1), [0,1] or the long lineL, (ii) a locally connected (Hausdorff) space which has a continuous selection must be orderable, and (iii) an infinite connected, Hausdorff space has exactly two continuous selections if and only if it is compact and orderable. We use these results to give various characterizations of intervals via continuous selections. For instance, (iv) a topological spaceX is homeomorphic to [0,1] if (and only if)X is infinite, separable, connected, Hausdorff space and has exactly two continuous selections, and (v) a topological spaceX is homeomorphic to [0,1) if (and only if) one of the following equivalent conditions holds: (a)X is infinite, Hausdorff, separable, pathwise connected and has exactly one continuous selection; (b)X is infinite, separable, locally connected and has exactly one continuous selection; (c)X is infinite, metric, locally connected and has exactly one continuous selection. Three examples are exhibited which demonstrate the necessity of various assumptions in our results.  相似文献   

2.
3.
In this work we expand upon the theory of open ultrafilters in the setting of regular spaces. In [E. van Douwen, Remote points, Dissertationes Math. (Rozprawy Mat.) 188 (1981) 1-45], van Douwen showed that if X is a non-feebly compact Tychonoff space with a countable π-base, then βX has a remote point. We develop a related result for the class of regular spaces which shows that in a non-feebly compact regular space X with a countable π-base, there exists a free open ultrafilter on X that is also a regular filter.Of central importance is a result of Mooney [D.D. Mooney, H-bounded sets, Topology Proc. 18 (1993) 195-207] that characterizes open ultrafilters as open filters that are saturated and disjoint-prime. Smirnov [J.M. Smirnov, Some relations on the theory of dimensions, Mat. Sb. 29 (1951) 157-172] showed that maximal completely regular filters are disjoint prime, from which it was concluded that βX is a perfect extension for a Tychonoff space X. We extend this result, and other results of Skljarenko [E.G. Skljarenko, Some questions in the theory of bicompactifications, Amer. Math. Soc. Transl. Ser. 2 58 (1966) 216-266], by showing that a maximal regular filter on any Hausdorff space is disjoint prime.Open ultrafilters are integral to the study of maximal points and lower topologies in the partial order of Hausdorff topologies on a fixed set. We show that a maximal point in a Hausdorff space cannot have a neighborhood base of feebly compact neighborhoods. One corollary is that no locally countably compact Hausdorff topology is a lower topology, which was shown previously under the additional assumption of countable tightness by Alas and Wilson [O. Alas, R. Wilson, Which topologies can have immediate successors in the lattice of T1-topologies? Appl. Gen. Topol. 5 (2004) 231-242]. Another is that a maximal point in a feebly compact space is not a regular point. This generalizes results of both Carlson [N. Carlson, Lower upper topologies in the Hausdorff partial order on a fixed set, Topology Appl. 154 (2007) 619-624] and Costantini [C. Costantini, On some questions about posets of topologies on a fixed set, Topology Proc. 32 (2008) 187-225].  相似文献   

4.
We characterize metric spaces X whose hyperspaces X2 (or Bd(X)) of non-empty closed (bounded) subsets, endowed with the Hausdorff metric, are absolute [neighborhood] retracts.  相似文献   

5.
A completely regular space X is called nearly pseudocompact if υX?X is dense in βX?X, where βX is the Stone-?ech compactification of X and υX is its Hewitt realcompactification. After characterizing nearly pseudocompact spaces in a variety of ways, we show that X is nearly pseudocompact if it has a dense locally compact pseudocompact subspace, or if no point of X has a closed realcompact neighborhood. Moreover, every nearly pseudocompact space X is the union of two regular closed subsets X1, X2 such that Int X1 is locally compact, no points of X2 has a closed realcompact neighborhood, and Int(X1?X2)=?. It follows that a product of two nearly pseudocompact spaces, one of which is locally compact, is also nearly pseudocompact.  相似文献   

6.
Full subcategories C ? Top of the category of topological spaces, which are algebraic over Set in the sense of Herrlich [2], have pleasant separation properties, mostly subject to additional closedness assumptions. For instance, every C-object is a T1-space, if the two-element discrete space belongs to C. Moreover, if C is closed under the formation of finite powers in Top and even varietal [2], then every C-object is Hausdorff. Hence, the T2-axiom turns out to be (nearly) superfluous in Herrlich's and Strecker's characterization of the category of compact Hausdorff spaces [1], although it is essential for the proof.If we think of C-objects X as universal algebras (with possibly infinite operations), then the subalgebras of X form the closed sets of a compact topology on X, provided that the ordinal spaces [0, β] belong to C. This generalizes a result in [3]. The subalgebra topology is used to prove criterions for the Hausdorffness of every space in C, if C is only algebraic.  相似文献   

7.
A collection F of proper maps into a locally compact Hausdorff space X fixes the topology of X if the only locally compact Hausdorff topology on X which makes each element of F continuous and proper is the given topology. In I2=[-1, 1]×[-1, 1], neither the collection of analytic paths nor the collection of regular twice differentiable paths fixes the topology. However, in I2, both the collection of C arcs and the collection of regular C1 arcs fix the topology. In I2=[?1,1]×[?1,1], the collection of polynomial rays together with any collection of paths does not fix the topology. However, in R2, the collection of regular injective entire rays together with either the collection of C arcs or the collection of regular C1 arcs fixes the topology.  相似文献   

8.
Herrlich and Strecker characterized the category Comp 2 of compact Hausdorff spaces as the only nontrivial full epireflective subcategory in the category Top 2 of all Hausdorff spaces that is concretely isomorphic to a variety in the sense of universal algebra including infinitary operations. The original proof of this result requires Noble's theorem, i.e. a space is compact Hausdorff iff every of its powers is normal, which is far from being elementary. Likewise, Petz' characterization of the class of compact Hausdorff spaces as the only nontrivial epireflective subcategory of Top 2, which is closed under dense extensions (= epimorphisms in Top 2) and strictly contained in Top 2 is based on a result by Kattov stating that a space is compact Hausdorff iff its every closed subspace is H-closed. This note offers an elementary approach for both, instead.Presented at the European Colloquium of Category Theory, Tours, France, 25–31 July 1994.  相似文献   

9.
We show that the cardinality of any space X with Δ-power homogeneous semiregularization that is either Urysohn or quasiregular is bounded by 2c(X)πχ(X). This improves a result of G.J. Ridderbos who showed this bound holds for Δ-power homogeneous regular spaces. By introducing the notion of a local πθ-base, we show that this bound can be further sharpened. We also show that no H-closed extremally disconnected space is power homogeneous. This is a variation of a result of K. Kunen who showed that no compact F-space is power homogeneous.  相似文献   

10.
We consider completely regular Hausdorff spaces. In this paper we investigate the space of probability Radon measures P(X) on a space X and the property to be a Prohorov space. We prove that the space P(X) is sieve-complete if and only if X is sieve-complete. Every mapping generates the mapping . Some properties of the mapping P(φ) are studied. In particular, we investigate under which conditions the open continuous image of a Prohorov space is Prohorov.  相似文献   

11.
We generalize and refine results from the author's paper [18]. For a completely regular Hausdorff space X, υX denotes the Hewitt realcompactification of X. It is proved that if υ(X×Y)=υX×υY for any metacompact subparacompact (or m-paracompact) space Y, then X is locally compact. A P(n)-space is a space in which every intersection of less than n open sets is open. A characterization of those spaces X such that υ (X×Y = υX×υY for any (metacompact) P(n)-space Y is also obtained.  相似文献   

12.
In 2003 the author has associated with every cofinite inverse system of compact Hausdorff spaces X with limit X and every simplicial complex K (possibly infinite) with geometric realization P=|K| a resolution R(X,K) of X×P, which consists of paracompact spaces. If X consists of compact polyhedra, then R(X,K) consists of spaces having the homotopy type of polyhedra. In two subsequent papers the author proved that R(X,K) is a covariant functor in each of its variables X and K. In the present paper it is proved that R(X,K) is a bifunctor. Using this result, it is proved that the Cartesian product X×Z of a compact Hausdorff space X and a topological space Z is a bifunctor SSh(Cpt)×Sh(Top)→Sh(Top) from the product category of the strong shape category of compact Hausdorff spaces SSh(Cpt) and the shape category Sh(Top) of topological spaces to the category Sh(Top). This holds in spite of the fact that X×Z need not be a direct product in Sh(Top).  相似文献   

13.
We prove that a Hausdorff space X is very I-favorable if and only if X is the almost limit space of a σ-complete inverse system consisting of (not necessarily Hausdorff) second countable spaces and surjective d-open bonding maps. It is also shown that the class of Tychonoff very I-favorable spaces with respect to the co-zero sets coincides with the d-openly generated spaces.  相似文献   

14.
We introduce a new cardinal invariant, core of a space, defined for any locally compact Hausdorff space X and denoted by cor(X). Locally compact spaces of countable core generalize locally compact σ-compact spaces in a way that is slightly exotic, but still quite natural. We show in Section 1 that under a broad range of conditions locally compact spaces of countable core must be σ-compact. In particular, normal locally compact spaces of countable core and realcompact locally compact spaces of countable core are σ-compact. Perfect mappings preserve the class of spaces of countable core in both directions (Section 2). The Alexandroff compactification aX is weakly first countable at the Alexandroff point a if and only if cor(X)=ω (Section 3). Two examples of non-σ-compact locally compact spaces of countable core are discussed in Section 3. We also extend the well-known theorem of Alexandroff and Urysohn on the cardinality of perfectly normal compacta to compacta satisfying a weak version of perfect normality. Several open problems are formulated.  相似文献   

15.
A fraction-dense (semi-prime) commutative ring A with 1 is one for which the classical quotient ring is rigid in its maximal quotient ring. The fraction-dense f-rings are characterized as those for which the space of minimal prime ideals is compact and extremally disconnected. For Archimedean lattice-ordered groups with this property it is shown that the Dedekind and order completion coincide. Fraction-dense spaces are defined as those for which C (X) is fraction-dense. If X is compact, then this notion is equivalent to the coincidence of the absolute of X and its quasi-F cover.  相似文献   

16.
Let A be a lattice-ordered algebra endowed with a topology compatible with the structure of algebra. We provide internal conditions for A to be isomorphic as lattice-ordered algebras and homeomorphic to Ck(X), the lattice-ordered algebra C(X) of real continuous functions on a completely regular and Hausdorff topological space X, endowed with the topology of uniform convergence on compact sets. As a previous step, we determine this topology among the locally m-convex topologies on C(X) with the property that each order closed interval is bounded.  相似文献   

17.
Let X be a Hausdorff topological space and exp(X) be the space of all (nonempty) closed subsets of a space X with the Vietoris topology. We consider hereditary normality-type properties of exp(X). In particular, we prove that if exp(X) is hereditarily D-normal, then X is a metrizable compact space.  相似文献   

18.
A metric space X is straight if for each finite cover of X by closed sets, and for each real valued function f on X, if f is uniformly continuous on each set of the cover, then f is uniformly continuous on the whole of X. A locally connected space is straight iff it is uniformly locally connected (ULC). It is easily seen that ULC spaces are stable under finite products. On the other hand the product of two straight spaces is not necessarily straight. We prove that the product X×Y of two metric spaces is straight if and only if both X and Y are straight and one of the following conditions holds:
(a)
both X and Y are precompact;
(b)
both X and Y are locally connected;
(c)
one of the spaces is both precompact and locally connected.
In particular, when X satisfies (c), the product X×Z is straight for every straight space Z.Finally, we characterize when infinite products of metric spaces are ULC and we completely solve the problem of straightness of infinite products of ULC spaces.  相似文献   

19.
Say that a cardinal number κ is small relative to the space X if κ<Δ(X), where Δ(X) is the least cardinality of a non-empty open set in X. We prove that no Baire metric space can be covered by a small number of discrete sets, and give some generalizations. We show a ZFC example of a regular Baire σ-space and a consistent example of a normal Baire Moore space which can be covered by a small number of discrete sets. We finish with some remarks on linearly ordered spaces.  相似文献   

20.
A topological space is called resolvable if it is a union of two disjoint dense subsets, and is n-resolvable if it is a union of n mutually disjoint dense subsets. Clearly a resolvable space has no isolated points. If f is a selfmap on X, the sets A?X with f (A)?A are the closed sets of an Alexandroff topology called the primal topology 𝒫(f ) associated with f. We investigate resolvability for primal spaces (X, 𝒫(f)). Our main result is that an Alexandroff space is resolvable if and only if it has no isolated points. Moreover, n-resolvability and other related concepts are investigated for primal spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号