首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Since the use of a quantum channel is very expensive for transmitting large messages, it is vital to develop an effective quantum compression encoding scheme that is easy to implement. Given that, with the single-photon spin-orbit entanglement, we propose a quantum secret sharing scheme using orbital angular momentum onto multiple spin states based on Fibonacci compression encoding. In our proposed scheme, we can represent the frequency of any secret message which is typically collection of bits encodings of text or integers as a bitstring using the base Fibonacci sequence, which is encoded multiple spin states for secret shares transmitted to participants. We demonstrate that Fibonacci compression encoding carries excellent properties that enable us to achieve more robust quantum secret sharing schemes with fewer number of photons.  相似文献   

2.
Quantum secret sharing is to distribute secret message securely between multi-parties. Here exploiting orbital angular momentum (OAM) state of single photons as the information carrier, we propose a high-dimensional circular quantum secret sharing protocol which increases the channel capacity largely. In the proposed protocol, the secret message is split into two parts, and each encoded on the OAM state of single photons. The security of the protocol is guaranteed by the laws of non-cloning theorem. And the secret messages could not be recovered except that the two receivers collaborated with each other. Moreover, the proposed protocol could be extended into high-level quantum systems, and the enhanced security could be achieved.  相似文献   

3.
Employing orbital angular momentum (OAM) of single photon, we demonstrate a high dimensional quantum secret sharing protocol. The protocol shows a high capacity of communication as the keys are encoded on the OAM of photons in d-level Hilbert space. In the proposed protocol, the remote users could share secret keys securely. The implementation for the OAM state preparation and measurement is also discussed. We show that the protocol exhibits a high security and the alignment of shared reference frames is not required.  相似文献   

4.
International Journal of Theoretical Physics - In quantum wavelet transform, the pixel values of an image may appear signed decimal instead of integer. Consequently, a generalized representation to...  相似文献   

5.
A multi-partite-controlled quantum secret sharing scheme using several non-orthogonal entanglement states is presented with unconditional security. In this scheme, the participants share the secret quantum state by exchanging the secret polarization angles of the disordered travel particles. The security of the secret quantum state is also guaranteed by the non-orthogonal multi-partite-controlled entanglement states, the participants' secret polarizations, and the disorder of the travelling particles. Moreover, the present scheme is secure against the particle-number splitting attack and the intercept-and-resend attack. It may be still secure even if the distributed quantum state is embedded in a not-so-weak coherent-state pulse.  相似文献   

6.
A new implementation of high-dimensional quantum key distribution (QKD) protocol is discussed. Using three mutual unbiased bases, we present a d?level six-state QKD protocol that exploits the orbital angular momentum with the spatial mode of the light beam. The protocol shows that the feature of a high capacity since keys are encoded using photon modes in d-level Hilbert space. The devices for state preparation and measurement are also discussed. This protocol has high security and the alignment of shared reference frames is not needed between sender and receiver.  相似文献   

7.
8.
GAO Gan 《理论物理通讯》2009,52(3):421-424
We present a two-photon three-dimensional multiparty quantum secret sharing scheme. The secret messages are encoded by performing local operations. This is different from those quantum secret sharing protocols that all sharers must make a state measurement. The merit of our protocol is the high capacity.  相似文献   

9.
作为光子重要自由度之一,轨道角动量(OAM)在光量子信息研究中占据着重要地位。将其与偏振等光子的其他自由度相结合,可实现多自由度光量子信息处理。此外,由于其具有天然的离散高维属性,故其是开展高维量子信息处理研究的最佳自由度之一。基于自发参量下转换非线性光学过程能够便捷地获得OAM纠缠源。近年来,光子OAM量子纠缠的研究受到了广泛关注,在多自由度、高维和多光子等多个方向都取得了重要进展。然而,该领域尚有诸多悬而未决的关键科学问题亟须深入研究,包括如何实现高效高质的OAM分离,如何实现更高维度的频率转换,如何提升多自由度纠缠源的品质,如何获得更多维度、更多光子的高维纠缠态以及如何构建可行的高维量子门等。从光子OAM最基本的二维操纵着手,综述了单光子OAM量子态调控、双光子及多光子OAM纠缠操纵。围绕多自由度、大角动量和高维等特性,从生成、调控、测量及应用等角度系统讨论了光子OAM量子纠缠。同时,探索了解决本方向关键科学问题的一些可能解决途径。  相似文献   

10.
International Journal of Theoretical Physics - In this paper we propose two verifiable threshold quantum secret sharing protocols with d-dimensional GHZ state. In the proposed protocol, the dealer...  相似文献   

11.
Hwang et al. (Phys. Scr. 83:045004, 2011) proposed a high efficient multiparty quantum secret sharing by using Greenberger-Horne-Zeilinger (GHZ) states. But Liu et al. (Phys. Scr. 84:045015, 2011) analyzed the security of Hwang et al.’s protocol and found that it was insecure for Charlie who might obtain half of information about the dealer’s secret directly. They put forward an improved protocol by adding operation on photons in sequence S 3. However, we point out Liu et al.’s protocol is not secure too if a dishonest participant Charlie carries out intercept-resend attack. And a further improved quantum secret sharing protocol is proposed based on Bell states in this paper. Our newly proposed protocol can stand against participant attack, provide a higher efficiency in transmission and reduce the complexity of implementation.  相似文献   

12.
We present a two-photon three-dimensional multiparty quantum secret sharing scheme. The secret messages are encoded by performing local operations. This is different from those quantum secret sharing protocols that all sharers must make a state measurement. The merit of our protocol is the high capacity.  相似文献   

13.
Inspired by the protocol presented by Bagherinezhad and Karimipour [Phys. Rev. A 67 (2003) 044302], which will be shown to be insecure, we present a multipartite quantum secret sharing protocol using reusable Greenberger-Horne-Zeilinger (GHZ) states. This protocol is robust against eavesdropping and could be used for the circumstance of many parties.  相似文献   

14.

The main defects of the existing quantum secret sharing schemes are as follows: (1) The identity of the secret sender cannot be confirmed. Receivers of shared secret information may be vulnerable to Trojan attacks; (2) If a malicious attacker Eve impersonates the identity of the receiver, she can finally obtain all the information of the secret that Alice shared; (3) In the process of secret recovery, it is necessary to transmit qubits among all participants involved in secret recovery. Sometimes, the same particle needs to be operated on by all participants to achieve secret sharing, which increases the possibility of eavesdropping and also increases the probability of errors. In this work, we proposed a quantum secret sharing scheme with authentication, the receiver performs corresponding operations on qubits of Greenberger-Horne-Zeilinger(GHZ) state based on the key string calculated by the shared identity number and random Error Correction Code(ECC), the secret sender can calculate the corresponding measurement basis(MB) through the information she has, and then inform the measurement party. This process realizes the mutual authentication between the sender and the receiver. It can protect against identity impersonation attacks, through the ECC verification, it also can resist intercept-resend attacks.

  相似文献   

15.
Quantum secure direct communication (QSDC) is to transmit information directly through quantum channels without generating secret keys. The efficiencies of QSDC rely on the capacity of qubits. Exploiting orbital angular momentum of single photons, we proposed a high-capacity one-time pad QSDC protocol. The information is encoded on the Hermite-Gauss mode and transmitted directly on the Laguerre-Gauss mode of the photon pluses. The proposed system provides a high coding space, and the proposed protocol is robust against collective-dephasing channel noise.  相似文献   

16.
17.
Security of a quantum secret sharing of quantum state protocol proposed by Guo et al. [Chin. Phys. Lett. 25 (2008) 16] is reexamined. It is shown that an eavesdropper can obtain some of the transmitted secret information by monitoring the classical channel or the entire secret by intercepting the quantum states, and moreover, the eavesdropper can even maliciously replace the secret message with an arbitrary message without being detected. Finally, the deep reasons why an eavesdropper can attack this protocol are discussed and the modified protocol is presented to amend the security loopholes.  相似文献   

18.
19.

This paper is concerned with the better security of quantum image secret sharing (QISS) algorithm. The improved QISS (IQISS) scheme is implemented on both quantum gray image (FRQI) and quantum color image (MCQI). The new IQISS scheme comprises efficient sharing process and recovering process. The core idea of the sharing process is to combine encryption and measurement for two types of quantum secret images to acquire the quantum shadow images. In the recovering process, strip operation is firstly utilized on the shadow images. Afterwards, the decryption algorithm is used to recover the original quantum secret image. Experiments demonstrate that significant improvements in the security are in favor of the proposed approach.

  相似文献   

20.
Quantum secret sharing (QSS) and quantum search algorithm (QSA) are considered as two important but different research topics in quantum information science. This paper recognizes an important feature in the well-known Grover’s QSA and then applies it to propose a QSS protocol. In contrast to the existing QSA-based QSS protocols, the newly proposed protocol has the following two advantages: (1)?no quantum memory is required by the agents, whereas the agents in the existing QSA-based QSS protocols need long-term quantum memories to store their secret shadows; (2)?the agents can cooperate to recover the boss’s secret by using shadows in classical bits, whereas, the others have to combine their shadows in photons and perform a unitary operation on the retained photons. The proposed QSS protocol is also shown to be secure against eavesdroppers or malicious agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号