首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In this article, we are concerned with the following fractional Schrödinger–Poisson system:
$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{s}u+V(x)u+\phi u=f(u)&{} \quad \hbox {in}~\mathbb {R}^{3},\\ (-\Delta )^{t}\phi =u^2&{} \quad \hbox {in}~\mathbb {R}^{3},\\ \end{array} \right. \end{aligned}$$
where \(0<s\le t<1\), \(2s+2t>3\), and \(f\in C(\mathbb {R},\mathbb {R})\). Under more relaxed assumptions on potential V(x) and f(x), we obtain the existence of ground state solutions for the above problem by adopting some new tricks. Our results here extend the existing study.
  相似文献   

2.
In this article we study the problem
$$\begin{aligned} \Delta ^{2}u-\left( a+b\int _{\mathbb {R}^{N}}\left| \nabla u\right| ^{2}dx\right) \Delta u+V(x)u=\left| u\right| ^{p-2}u\ \text { in }\mathbb {R}^{N}, \end{aligned}$$
where \(\Delta ^{2}:=\Delta (\Delta )\) is the biharmonic operator, \(a,b>0\) are constants, \(N\le 7,\) \(p\in (4,2_{*})\) for \(2_{*}\) defined below, and \(V(x)\in C(\mathbb {R}^{N},\mathbb {R})\). Under appropriate assumptions on V(x), the existence of least energy sign-changing solution is obtained by combining the variational methods and the Nehari method.
  相似文献   

3.
In this paper, we investigate solutions of the hyperbolic Poisson equation \(\Delta _{h}u(x)=\psi (x)\), where \(\psi \in L^{\infty }(\mathbb {B}^{n}, {\mathbb R}^n)\) and
$$\begin{aligned} \Delta _{h}u(x)= (1-|x|^2)^2\Delta u(x)+2(n-2)\left( 1-|x|^2\right) \sum _{i=1}^{n} x_{i} \frac{\partial u}{\partial x_{i}}(x) \end{aligned}$$
is the hyperbolic Laplace operator in the n-dimensional space \(\mathbb {R}^n\) for \(n\ge 2\). We show that if \(n\ge 3\) and \(u\in C^{2}(\mathbb {B}^{n},{\mathbb R}^n) \cap C(\overline{\mathbb {B}^{n}},{\mathbb R}^n )\) is a solution to the hyperbolic Poisson equation, then it has the representation \(u=P_{h}[\phi ]-G_{ h}[\psi ]\) provided that \(u\mid _{\mathbb {S}^{n-1}}=\phi \) and \(\int _{\mathbb {B}^{n}}(1-|x|^{2})^{n-1} |\psi (x)|\,d\tau (x)<\infty \). Here \(P_{h}\) and \(G_{h}\) denote Poisson and Green integrals with respect to \(\Delta _{h}\), respectively. Furthermore, we prove that functions of the form \(u=P_{h}[\phi ]-G_{h}[\psi ]\) are Lipschitz continuous.
  相似文献   

4.
We consider the perturbed Schrödinger equation
$\left\{\begin{array}{ll}{- \varepsilon ^2 \Delta u + V(x)u = P(x)|u|^{p - 2} u + k(x)|u|^{2* - 2} u} &; {\text{for}}\, x \in {\mathbb{R}}^N\\ \qquad \qquad \quad {u(x) \rightarrow 0} &; \text{as}\, {|x| \rightarrow \infty} \end{array} \right.$
where \(N\geq 3, \ 2^*=2N/(N-2)\) is the Sobolev critical exponent, \(p\in (2, 2^*)\) , P(x) and K(x) are bounded positive functions. Under proper conditions on V we show that it has at least one positive solution provided that \(\varepsilon\leq{\mathcal{E}}\) ; for any \(m\in{\mathbb{N}}\) , it has m pairs of solutions if \(\varepsilon\leq{\mathcal{E}}_{m}\) ; and suppose there exists an orthogonal involution \(\tau:{\mathbb{R}}^{N}\to{\mathbb{R}}^{N}\) such that V(x), P(x) and K(x) are τ -invariant, then it has at least one pair of solutions which change sign exactly once provided that \(\varepsilon\leq{\mathcal{E}}\) , where \({\mathcal{E}}\) and \({\mathcal{E}}_{m}\) are sufficiently small positive numbers. Moreover, these solutions \(u_\varepsilon\to 0\) in \(H^1({\mathbb{R}}^N)\) as \(\varepsilon\to 0\) .
  相似文献   

5.
We consider the existence of single and multi-peak solutions of the following nonlinear elliptic Neumann problem
$$\begin{aligned} \left\{ \begin{aligned} -\Delta u+\lambda ^{2} u&=Q(x)|u|^{p-2}u \qquad&\text {in} ~~~~\mathbb {R}^{N}_{+}, \\ \frac{\partial u }{\partial n}&=f(x,u) \qquad&\text {on}~~\partial \mathbb {R}^{N}_{+}, \end{aligned}\right. \end{aligned}$$
where \(\lambda \) is a large number, \(p\in (2,\frac{2N}{N-2})\) for \(N\ge 3\), f(xu) is subcritical about u and Q is positive and has some non-degenerate critical points in \(\mathbb {R}^{N}_{+}\). For \(\lambda \) large, we can get solutions which have peaks near the non-degenerate critical points of Q.
  相似文献   

6.
Book reviews     
We consider the following singularly perturbed nonlocal elliptic problem
$$\begin{aligned} -\left( \varepsilon ^{2}a+\varepsilon b\displaystyle \int _{\mathbb {R}^{3}}|\nabla u|^{2}dx\right) \Delta u+V(x)u=\displaystyle \varepsilon ^{\alpha -3}(W_{\alpha }(x)*|u|^{p})|u|^{p-2}u, \quad x\in \mathbb {R}^{3}, \end{aligned}$$
where \(\varepsilon >0\) is a parameter, \(a>0,b\ge 0\) are constants, \(\alpha \in (0,3)\), \(p\in [2, 6-\alpha )\), \(W_{\alpha }(x)\) is a convolution kernel and V(x) is an external potential satisfying some conditions. By using variational methods, we establish the existence and concentration of positive ground state solutions for the above equation.
  相似文献   

7.
This paper is concerned with the following Kirchhoff-type equation
$$\begin{aligned} -\left( a+b\int _{\mathbb {R}^3}|\nabla {u}|^2\mathrm {d}x\right) \triangle u+V(x)u=f(x, u), \quad x\in \mathbb {R}^{3}, \end{aligned}$$
where \(V\in \mathcal {C}(\mathbb {R}^{3}, (0,\infty ))\), \(f\in \mathcal {C}({\mathbb {R}}^{3}\times \mathbb {R}, \mathbb {R})\), V(x) and f(xt) are periodic or asymptotically periodic in x. Using weaker assumptions \(\lim _{|t|\rightarrow \infty }\frac{\int _0^tf(x, s)\mathrm {d}s}{|t|^3}=\infty \) uniformly in \(x\in \mathbb {R}^3\) and
$$\begin{aligned}&\left[ \frac{f(x,\tau )}{\tau ^3}-\frac{f(x,t\tau )}{(t\tau )^3} \right] \mathrm {sign}(1-t) +\theta _0V(x)\frac{|1-t^2|}{(t\tau )^2}\ge 0, \quad \\&\quad \forall x\in \mathbb {R}^3,\ t>0, \ \tau \ne 0 \end{aligned}$$
with a constant \(\theta _0\in (0,1)\), instead of the common assumption \(\lim _{|t|\rightarrow \infty }\frac{\int _0^tf(x, s)\mathrm {d}s}{|t|^4}=\infty \) uniformly in \(x\in \mathbb {R}^3\) and the usual Nehari-type monotonic condition on \(f(x,t)/|t|^3\), we establish the existence of Nehari-type ground state solutions of the above problem, which generalizes and improves the recent results of Qin et al. (Comput Math Appl 71:1524–1536, 2016) and Zhang and Zhang (J Math Anal Appl 423:1671–1692, 2015). In particular, our results unify asymptotically cubic and super-cubic nonlinearities.
  相似文献   

8.
In this paper, we study the following fractional Schrödinger–Poisson system
$$\begin{aligned} \left\{ \begin{array}{ll} \varepsilon ^{2s}(-\Delta )^s u +V(x)u+\phi u=K(x)|u|^{p-2}u,\,\,\text {in}~\mathbb {R}^3,\\ \\ \varepsilon ^{2s}(-\Delta )^s \phi =u^2,\,\,\text {in}~\mathbb {R}^3, \end{array} \right. \end{aligned}$$
(0.1)
where \(\varepsilon >0\) is a small parameter, \(\frac{3}{4}<s<1\), \(4<p<2_s^*:=\frac{6}{3-2s}\), \(V(x)\in C(\mathbb {R}^3)\cap L^\infty (\mathbb {R}^3)\) has positive global minimum, and \(K(x)\in C(\mathbb {R}^3)\cap L^\infty (\mathbb {R}^3)\) is positive and has global maximum. We prove the existence of a positive ground state solution by using variational methods for each \(\varepsilon >0\) sufficiently small, and we determine a concrete set related to the potentials V and K as the concentration position of these ground state solutions as \(\varepsilon \rightarrow 0\). Moreover, we considered some properties of these ground state solutions, such as convergence and decay estimate.
  相似文献   

9.
This paper is concerned with the following fourth-order elliptic equation
$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle \Delta ^{2}u-\Delta u+V(x)u=|u|^{p-1}u,\,\mathrm{in}\,\mathbb {R}^{N},\\ u\in H^{2}\left( \mathbb {R}^{N}\right) , \end{array} \right. \end{aligned}$$
where \(p\in (2,\,2_{*}-1),\,u{\text {:}}\,\mathbb {R}^{N}\rightarrow \mathbb R.\) Under some appropriate assumptions on potential V(x),  the existence of nontrivial solutions and the least energy nodal solution are obtained by using variational methods.
  相似文献   

10.
Let \(\Omega \) be a bounded domain with smooth boundary in an n-dimensional metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and let \(\mathbf {u}=(u^1, \ldots , u^n)\) be a vector-valued function from \(\Omega \) to \(\mathbb {R}^n\). In this paper, we investigate the Dirichlet eigenvalue problem of a system of equations of the drifting Laplacian: \(\mathbb {L}_{\phi } \mathbf {u} + \alpha [ \nabla (\mathrm {div}\mathbf { u}) -\nabla \phi \mathrm {div} \mathbf {u}]= - \widetilde{\sigma } \mathbf {u}\), in \( \Omega \), and \(u|_{\partial \Omega }=0,\) where \(\mathbb {L}_{\phi } = \Delta - \nabla \phi \cdot \nabla \) is the drifting Laplacian and \(\alpha \) is a nonnegative constant. We establish some universal inequalities for lower order eigenvalues of this problem on the metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and the Gaussian shrinking soliton \((\mathbb {R}^n, \langle ,\rangle _{\mathrm {can}}, e^{-\frac{|x|^2}{4}}dv, \frac{1}{2})\). Moreover, we give an estimate for the upper bound of the second eigenvalue of this problem in terms of its first eigenvalue on the gradient product Ricci soliton \((\Sigma \times \mathbb {R}, \langle ,\rangle , e^{-\frac{\kappa t^2}{2}}dv, \kappa )\), where \( \Sigma \) is an Einstein manifold with constant Ricci curvature \(\kappa \).  相似文献   

11.
Using variational methods, we establish existence of multi-bump solutions for the following class of problems
$$\begin{aligned} \left\{ \begin{array}{l} \Delta ^2 u +(\lambda V(x)+1)u = f(u), \quad \text{ in } \quad \mathbb {R}^{N},\\ u \in H^{2}(\mathbb {R}^{N}), \end{array} \right. \end{aligned}$$
where \(N \ge 1\), \(\Delta ^2\) is the biharmonic operator, f is a continuous function with subcritical growth, \(V : \mathbb {R}^N \rightarrow \mathbb {R}\) is a continuous function verifying some conditions and \(\lambda >0\) is a real constant large enough.
  相似文献   

12.
Let \(\Omega \subset \mathbb R^N\) be a bounded domain with smooth boundary. Existence of a positive solution to the quasilinear equation
$$\begin{aligned} -\text {div}\left[ \left( a(x)+|u|^\theta \right) \nabla u\right] +\frac{\theta }{2}|u|^{\theta -2}u|\nabla u|^2=|u|^{p-2}u \quad \text {in}\ \Omega \end{aligned}$$
with zero Dirichlet boundary condition is proved. Here \(\theta >0\) and a(x) is a measurable function satisfying \(0<\alpha \le a(x)\le \beta \). The equation involves singularity when \(0<\theta \le 1\). As a main novelty with respect to corresponding results in the literature, we only assume \(\theta +2<p<\frac{2^*}{2}(\theta +2)\). The proof relies on a perturbation method and a critical point theory for E-differentiable functionals.
  相似文献   

13.
Let \({\mathbb {K}(\mathbb {R}^{d})}\) denote the cone of discrete Radon measures on \(\mathbb {R}^{d}\). There is a natural differentiation on \(\mathbb {K}(\mathbb {R}^{d})\): for a differentiable function \(F:\mathbb {K}(\mathbb {R}^{d})\to \mathbb {R}\), one defines its gradient \(\nabla ^{\mathbb {K}}F\) as a vector field which assigns to each \(\eta \in \mathbb {K}(\mathbb {R}^{d})\) an element of a tangent space \(T_{\eta }(\mathbb {K}(\mathbb {R}^{d}))\) to \(\mathbb {K}(\mathbb {R}^{d})\) at point η. Let \(\phi :\mathbb {R}^{d}\times \mathbb {R}^{d}\to \mathbb {R}\) be a potential of pair interaction, and let μ be a corresponding Gibbs perturbation of (the distribution of) a completely random measure on \(\mathbb {R}^{d}\). In particular, μ is a probability measure on \(\mathbb {K}(\mathbb {R}^{d})\) such that the set of atoms of a discrete measure \(\eta \in \mathbb {K}(\mathbb {R}^{d})\) is μ-a.s. dense in \(\mathbb {R}^{d}\). We consider the corresponding Dirichlet form
$$\mathcal{E}^{\mathbb{K}}(F,G)={\int}_{\mathbb K(\mathbb{R}^{d})}\langle\nabla^{\mathbb{K}} F(\eta), \nabla^{\mathbb{K}} G(\eta)\rangle_{T_{\eta}(\mathbb{K})}\,d\mu(\eta). $$
Integrating by parts with respect to the measure μ, we explicitly find the generator of this Dirichlet form. By using the theory of Dirichlet forms, we prove the main result of the paper: If d ≥ 2, there exists a conservative diffusion process on \(\mathbb {K}(\mathbb {R}^{d})\) which is properly associated with the Dirichlet form \(\mathcal {E}^{\mathbb {K}}\).
  相似文献   

14.
15.
We give explicit analytic criteria for two problems associated with the Schrödinger operator H=-Δ+Q on L2(? n ) where QD’(? n ) is an arbitrary real- or complex-valued potential.
First, we obtain necessary and sufficient conditions on Q so that the quadratic form \(\langle{Q}\cdot,\ \cdot\rangle\) has zero relative bound with respect to the Laplacian. For QL1loc(? n ), this property can be expressed in the form of the integral inequality:
$\left\vert\int_{\mathbb{R}^n} |u(x)|^2 Q(x) dx \right\vert\leq\epsilon\| \nabla u \|^2_{L^2(\mathbb{R}^n)} + C(\epsilon) \|u \|^2_{L^2(\mathbb{R}^n)}, \quad\forall u \in C^{\infty}_0(\mathbb{R}^n),$
for an arbitrarily small ε>0 and some C(ε)>0. One of the major steps here is the reduction to a similar inequality with nonnegative function \(|\nabla(1-\Delta)^{-1} Q|^2 + |(1-\Delta)^{-1} Q|\) in place of Q. This provides a complete solution to the infinitesimal form boundedness problem for the Schrödinger operator, and leads to new broad classes of admissible distributional potentials Q, which extend the usual L p and Kato classes, as well as those based on the well-known conditions of Fefferman–Phong and Chang–Wilson–Wolff.
Secondly, we characterize Trudinger’s subordination property where C(ε) in the above inequality is subject to the condition C(ε)≤cε(β>0) as ε→+0. Such quadratic form inequalities can be understood entirely in the framework of Morrey–Campanato spaces, using mean oscillations of \(\nabla(1-\Delta)^{-1}Q\) and \((1-\Delta)^{-1}Q\) on balls or cubes. A version of this condition where ε∈(0,+∞) is equivalent to the multiplicative inequality:
$\left\vert\int_{\mathbb{R}^n} |u(x)|^2Q(x)dx\right\vert\leq{C}\|\nabla{u}\|^{2p}_{L^2(\mathbb{R}^n)}\|u\|^{2(1-p)}_{L^2(\mathbb{R}^n)},\quad\forall{u}\in{C}^\infty_0(\mathbb{R}^n),$
with \(p=\frac\beta{1 + \beta}\in(0,1)\). We show that this inequality holds if and only if \(\nabla\Delta^{-1} Q \in{BMO}(\mathbb{R}^n)\) if \(p=\frac{1}{2}\). For \(0 < p < \frac{1}{2}\), it is valid whenever \(\nabla\Delta^{-1}Q\) is Hölder-continuous of order 1-2p, or respectively lies in the Morrey space \(\mathcal{L}^{2,\lambda}\) with λ=n+2-4p if \(\frac{1}{2} < p < 1\). As a consequence, we characterize completely the class of those Q which satisfy an analogous multiplicative inequality of Nash’s type, with \(\|u\|_{L^1(\mathbb{R}^n)}\) in placeof \(\|u\|_{L^2(\mathbb{R}^n)}\).
These results are intimately connected with spectral theory and dynamics of the Schrödinger operator, and elliptic PDE theory.  相似文献   

16.
We apply the compactness results obtained in the first part of this work, to prove existence and multiplicity results for finite energy solutions to the nonlinear elliptic equation
$$-\triangle u + V \left(\left|x\right|\right) u = g \left(\left|x\right|, u\right) \quad {\rm in} \Omega \subseteq \mathbb{R}^{N},\,N \geq 3,$$
where \({\Omega}\) is a radial domain (bounded or unbounded) and u satisfies u =  0 on \({\partial\Omega}\) if \({\Omega \neq\mathbb{R}^{N}}\) and \({u \rightarrow 0}\) as \({\left|x\right| \rightarrow \infty}\) if \({\Omega}\) is unbounded. The potential V may be vanishing or unbounded at zero or at infinity and the nonlinearity g may be superlinear or sublinear. If g is sublinear, the case with a forcing term \({g\left(\left|\cdot\right|, 0\right) \neq 0}\) is also considered. Our results allow to deal with V and g exhibiting behaviours at zero or at infinity which are new in the literature and, when \({\Omega = \mathbb{R}^{N}}\), do not need to be compatible with each other.
  相似文献   

17.
We consider the stochastic differential equation (SDE) of the form
$$\begin{array}{@{}rcl@{}} \left\{\begin{array}{rcl} dX^ x(t) &=& \sigma(X(t-)) dL(t) \\ X^ x(0)&=&x,\quad x\in{\mathbb{R}}^ d, \end{array}\right. \end{array} $$
where \(\sigma :{\mathbb {R}}^ d\to {\mathbb {R}}^ d\) is globally Lipschitz continuous and L={L(t):t≥0} is a Lévy process. Under this condition on σ it is well known that the above problem has a unique solution X. Let \((\mathcal {P}_{t})_{t\ge 0}\) be the Markovian semigroup associated to X defined by \(\left ({\mathcal {P}}_{t} f\right ) (x) := \mathbb {E} \left [ f(X^ x(t))\right ]\), t≥0, \(x\in {\mathbb {R}}^{d}\), \(f\in \mathcal {B}_{b}({\mathbb {R}}^{d})\). Let B be a pseudo–differential operator characterized by its symbol q. Fix \(\rho \in \mathbb {R}\). In this article we investigate under which conditions on σ, L and q there exist two constants γ>0 and C>0 such that
$$\left| B {\mathcal{P}}_{t} u \right|_{H^{\rho}_{2}} \le C \, t^{-\gamma} \,\left| u \right|_{H^{\rho}_{2}}, \quad \forall u \in {H^{\rho}_{2}}(\mathbb{R}^{d} ),\, t>0. $$
  相似文献   

18.
We consider the problem
$$\begin{aligned} -\Delta u+\left( V_{\infty }+V(x)\right) u=|u|^{p-2}u,\quad u\in H_{0} ^{1}(\Omega ), \end{aligned}$$
where \(\Omega \) is either \(\mathbb {R}^{N}\) or a smooth domain in \(\mathbb {R} ^{N}\) with unbounded boundary, \(N\ge 3,\) \(V_{\infty }>0,\) \(V\in \mathcal {C} ^{0}(\mathbb {R}^{N}),\) \(\inf _{\mathbb {R}^{N}}V>-V_{\infty }\) and \(2<p<\frac{2N}{N-2}\). We assume V is periodic in the first m variables, and decays exponentially to zero in the remaining ones. We also assume that \(\Omega \) is periodic in the first m variables and has bounded complement in the other ones. Then, assuming that \(\Omega \) and V are invariant under some suitable group of symmetries on the last \(N-m\) coordinates of \(\mathbb {R}^{N}\), we establish existence and multiplicity of sign-changing solutions to this problem. We show that, under suitable assumptions, there is a combined effect of the number of periodic variables and the symmetries of the domain on the number of sign-changing solutions to this problem. This number is at least \(m+1\)
  相似文献   

19.
We prove the null controllability in large time of the following linear parabolic equation involving the Grushin operator with an inverse-square potential
$$u_t-\Delta_{x} u-|x|^{2}\Delta_{y}u-\frac{\mu}{|x|^2}u=v1_\omega$$
in a bounded domain \({\Omega=\Omega_1\times \Omega_2\subset \mathbb{R}^{N_1}\times \mathbb{R}^{N_2} (N_1\geq 3, N_2\geq 1}\)) intersecting the surface {x = 0} under an additive control supported in an open subset \({\omega=\omega_1\times \Omega_2}\) of \({\Omega}\).
  相似文献   

20.
We consider the stationary nonlinear magnetic Choquard equation
$(- {\rm i}\nabla+ A(x))^{2}u + V (x)u = \left(\frac{1}{|x|^{\alpha}}\ast |u|^{p}\right) |u|^{p-2}u,\quad x\in\mathbb{R}^{N}$
where A is a real-valued vector potential, V is a real-valued scalar potential, N ≥ 3, \({\alpha \in (0, N)}\) and 2 ? (α/N) < p < (2N ? α)/(N?2). We assume that both A and V are compatible with the action of some group G of linear isometries of \({\mathbb{R}^{N}}\) . We establish the existence of multiple complex valued solutions to this equation which satisfy the symmetry condition
$u(gx) = \tau(g)u(x)\quad{\rm for\, all }\ g \in G,\;x \in \mathbb{R}^{N},$
where \({\tau : G \rightarrow \mathbb{S}^{1}}\) is a given group homomorphism into the unit complex numbers.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号