首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this paper, we first obtain a bilinear form with small perturbation u_0 for a generalized(3+1)-dimensional nonlinear wave equation in liquid with gas bubbles. Based on that, a new bilinear B?cklund transformation which consists of four bilinear equations and involves seven arbitrary parameters is constructed. After that, by applying a new symbolic computation method, we construct the higher order rogue waves with controllable center to the generalized(3+1)-dimensional nonlinear wave equation. The rogue waves present new structure, which contain two free parametersα and β. The dynamic properties of the higher order rogue waves are demonstrated graphically. The graphs tell that the parameters α and β can control the center of the rogue waves.  相似文献   

2.
徐涛  陈勇 《中国物理 B》2016,25(9):90201-090201
We study the generalized Darboux transformation to the three-component coupled nonlinear Schr ¨odinger equation.First-and second-order localized waves are obtained by this technique.In first-order localized wave,we get the interactional solutions between first-order rogue wave and one-dark,one-bright soliton respectively.Meanwhile,the interactional solutions between one-breather and first-order rogue wave are also given.In second-order localized wave,one-dark-one-bright soliton together with second-order rogue wave is presented in the first component,and two-bright soliton together with second-order rogue wave are gained respectively in the other two components.Besides,we observe second-order rogue wave together with one-breather in three components.Moreover,by increasing the absolute values of two free parameters,the nonlinear waves merge with each other distinctly.These results further reveal the interesting dynamic structures of localized waves in the three-component coupled system.  相似文献   

3.
徐涛  陈勇  林机 《中国物理 B》2017,26(12):120201-120201
We investigate some novel localized waves on the plane wave background in the coupled cubic–quintic nonlinear Schr o¨dinger(CCQNLS) equations through the generalized Darboux transformation(DT). A special vector solution of the Lax pair of the CCQNLS system is elaborately constructed, based on the vector solution, various types of higherorder localized wave solutions of the CCQNLS system are constructed via the generalized DT. These abundant and novel localized waves constructed in the CCQNLS system include higher-order rogue waves, higher-order rogues interacting with multi-soliton or multi-breather separately. The first-and second-order semi-rational localized waves including several free parameters are mainly discussed:(i) the semi-rational solutions degenerate to the first-and second-order vector rogue wave solutions;(ii) hybrid solutions between a first-order rogue wave and a dark or bright soliton, a second-order rogue wave and two dark or bright solitons;(iii) hybrid solutions between a first-order rogue wave and a breather, a second-order rogue wave and two breathers. Some interesting and appealing dynamic properties of these types of localized waves are demonstrated, for example, these nonlinear waves merge with each other markedly by increasing the absolute value of α.These results further uncover some striking dynamic structures in the CCQNLS system.  相似文献   

4.
With the help of the similarity transformation connected the variable-coefficient (3+1)-dimensional nonlinear Schrdinger equation with the standard nonlinear Schrdinger equation, we firstly obtain first-order and second-order rogue wave solutions. Then, we investigate the controllable behaviors of these rogue waves in the hyperbolic dispersion decreasing profile. Our results indicate that the integral relation between the accumulated time T and the real time t is the basis to realize the control and manipulation of propagation behaviors of rogue waves, such as sustainment and restraint. We can modulate the value T 0 to achieve the sustained and restrained spatiotemporal rogue waves. Moreover, the controllability for position of sustainment and restraint for spatiotemporal rogue waves can also be realized by setting different values of X 0 .  相似文献   

5.
By means of the modified Darboux transformation we obtain some types of rogue waves in two-coupled nonlinear Schr ¨odinger equations.Our results show that the two components admits the symmetry and asymmetry rogue wave solutions,which arises from the joint action of self-phase,cross-phase modulation,and coherent coupling term.We also obtain the analytical transformation from the initial seed solution to unique rogue waves with the bountiful pair structure.In a special case,the asymmetry rogue wave can own the spatial and temporal symmetry gradually,which is controlled by one parameter.It is worth pointing out that the rogue wave of two components can share the temporal inversion symmetry.  相似文献   

6.
Optical fibers are seen in the optical sensing and optical fiber communication. Simultaneous propagation of optical pulses in an inhomogeneous optical fiber is described by a coupled time-dependent coefficient fourth-order nonlinear Schr?dinger system, which is discussed in this paper. For such a system, we work out the Lax pair, Darboux transformation, and corresponding vector semi-rational nonautonomous rogue wave solutions. When the group velocity dispersion(GVD) and fourth-order dispersion(FOD) coefficients are the constants, we exhibit the first-and second-order vector semirational rogue waves which are composed of the four-petalled rogue waves and eye-shaped breathers. Both the width of the rogue wave along the time axis and temporal separation between the adjacent peaks of the breather decrease with the GVD coefficient or FOD coefficient. With the GVD and FOD coefficients as the linear, cosine, and exponential functions, we respectively present the first-and second-order periodic vector semi-rational rogue waves, first-and second-order asymmetry vector semi-rational rogue waves, and interactions between the eye-shaped breathers and the composite rogue waves.  相似文献   

7.
We study some novel patterns of rogue wave in the coupled cubic-quintic nonlinear Schr?dinger equations.Utilizing the generalized Darboux transformation, the higher-order rogue wave pairs of the coupled system are generated.Especially, the first-and second-order rogue wave pairs are discussed in detail. It demonstrates that two classical fundamental rogue waves can be emerged from the first-order case and four or six classical fundamental rogue waves from the second-order case. In the second-order rogue wave solution, the distribution structures can be in triangle,quadrilateral and ring shapes by fixing appropriate values of the free parameters. In contrast to single-component systems, there are always more abundant rogue wave structures in multi-component ones. It is shown that the two higher-order nonlinear coefficients ρ_1 and ρ_2 make some skews of the rogue waves.  相似文献   

8.
We propose a unified theory to construct exact rogue wave solutions of the (2+1)-dimensional nonlinear Schrdinger equation with varying coefficients. And then the dynamics of the first- and the second-order optical rogues are investigated. Finally, the controllability of the optical rogue propagating in inhomogeneous nonlinear waveguides is discussed. By properly choosing the distributed coefficients, we demonstrate analytically that rogue waves can be restrained or even be annihilated, or emerge periodically and sustain forever. We also figure out the center-of-mass motion of the rogue waves.  相似文献   

9.
We propose a scheme that excites rogue waves via electromagnetically induced transparency(EIT), which can also excite breathers and solitons. The system is a resonant Λ-type atomic ensemble. Under EIT conditions, the envelope equation of the probe field can be reduced to several different models, such as the saturable nonlinear Schr?dinger equation(SNLSE), and SNLSE with the trapping potential provided by a far-detuned laser field or a magnetic field. In this scheme, rogue waves can be generated by different initial pulses, such as the Gaussian wave with(or without) the uniform background. The scheme can be used to obtain rogue waves,breathers and solitons. We show the existence regions of rogue waves, breathers, and solitons as the function of the amplitude and width of the initial pulse. The novelty of our paper is that, we not only show rogue waves in the integrable system numerically, but also present the method to generate and control rogue waves in the non-integrable system.  相似文献   

10.
We construct here explicitly new deformations of the Peregrine breather of order 5 with 8 real parameters. This gives new families of quasi-rational solutions of the NLS equation and thus one can describe in a more precise way the phenomena of appearance of multi rogue waves. With this method, we construct new patterns of different types of rogue waves. We get at the same time, the triangular configurations as well as rings isolated. Moreover, one sees appearing for certain values of the parameters, new configurations of concentric rings.  相似文献   

11.
Higher-order localized waves in coupled nonlinear Schr6dinger equations are investigated by the generalized Darboux transformation. We show that two dark-bright solitons together with a second-order rogue wave of fundamental or triangular pattern and two breathers together with a second-order rogue wave of fundamentM or triangular pattern coexist in the second-order localized wave for the coupled system. Moreover, by increasing the value of one free parameter, the nonlinear waves in the second-order localized wave can merge with each other. The results further reveal the abundant dynamic behaviors of localized waves in coupled systems.  相似文献   

12.
In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higherorder nonlinear Schr¨odinger equation(HONLS) by the Darboux transformation and confirm the decomposition rule of the rogue wave solutions up to fourth-order. These solutions have two parameters α and β which denote the contribution of the higher-order terms(dispersions and nonlinear effects) included in the HONLS equation. Two localized properties, i.e.,length and width of the first-order rogue wave solution are expressed by above two parameters, which show analytically a remarkable influence of higher-order terms on the rogue wave. Moreover, profiles of the higher-order rogue wave solutions demonstrate graphically a strong compression effect along t-direction given by higher-order terms.  相似文献   

13.
王鑫  陈勇 《中国物理 B》2014,(7):205-210
Novel explicit rogue wave solutions of the coupled Hirota equations are obtained by using the Darboux transformation.In contrast to the fundamental Peregrine solitons and dark rogue waves, we present an interesting rogue-wave pair that involves four zero-amplitude holes for the coupled Hirota equations. It is significant that the corresponding expressions of the rogue-wave pair solutions contain polynomials of the fourth order rather than the second order. Moreover, dark-brightrogue wave solutions of the coupled Hirota equations are given, and interactions between Peregrine solitons and dark-bright solitons are analyzed. The results further reveal the dynamical properties of rogue waves for the coupled Hirota equations.  相似文献   

14.
Within the(2+1)-dimensional Korteweg–de Vries equation framework,new bilinear B¨acklund transformation and Lax pair are presented based on the binary Bell polynomials and gauge transformation.By introducing an arbitrary functionφ(y),a family of deformed soliton and deformed breather solutions are presented with the improved Hirota’s bilinear method.By choosing the appropriate parameters,their interesting dynamic behaviors are shown in three-dimensional plots.Furthermore,novel rational solutions are generated by taking the limit of the obtained solitons.Additionally,twodimensional(2D)rogue waves(localized in both space and time)on the soliton plane are presented,we refer to them as deformed 2D rogue waves.The obtained deformed 2D rogue waves can be viewed as a 2D analog of the Peregrine soliton on soliton plane,and its evolution process is analyzed in detail.The deformed 2D rogue wave solutions are constructed successfully,which are closely related to the arbitrary functionφ(y).This new idea is also applicable to other nonlinear systems.  相似文献   

15.
Rogue waves are unexpectedly large deviations from equilibrium or otherwise calm positions in physical systems, e.g. hydrodynamic waves and optical beam intensities. The profiles and points of maximum displacements of these rogue waves are correlated with the movement of poles of the exact solutions extended to the complex plane through analytic continuation. Such links are shown to be surprisingly precise for the first order rogue wave of the nonlinear Schr¨odinger(NLS) and the derivative NLS equations. A computational study on the second order rogue waves of the NLS equation also displays remarkable agreements.  相似文献   

16.
This work investigates the interactions among solitons and their consequences in the production of rogue waves in an unmagnetized plasmas composing non-relativistic as well as relativistic degenerate electrons and positrons, and inertial non-relativistic helium ions. The extended Poincare′–Lighthill–Kuo(PLK) method is employed to derive the two-sided Korteweg–de Vries(Kd V) equations with their corresponding phase shifts. The nonlinear Schr o¨dinger equation(NLSE) is obtained from the modified Kd V(m Kd V) equation, which allows one to study the properties of the rogue waves. It is found that the Fermi temperature and quantum mechanical effects become pronounced due to the quantum diffraction of electrons and positrons in the plasmas. The densities and temperatures of the helium ions, degenerate electrons and positrons, and quantum parameters strongly modify the electrostatic ion acoustic resonances and their corresponding phase shifts due to the interactions among solitons and produce rogue waves in the plasma.  相似文献   

17.
A unified theory to construct exact optical rogue wave solutions of (1+1)-dimensional nonlinear Schrdinger equation with varying coefficients is proposed. The dynamics of the first-order optical rogue waves in nonlinear graded-index waveguide amplifiers exhibiting self-focusing or self-defocusing Kerr nonlinearity are also investigated. Moreover, under the suitable parameter condition, the propagation characteristics of the rogue waves in the nonlinear optical media are discussed. The properties of the optical rogue waves, such as width, amplitude, and position, can be controlled in the nonlinear optical media.  相似文献   

18.
余本海  张东玲  汤清彬 《中国物理 B》2011,20(8):83201-083201
Wave-particle duality is one of the most fundamental and mysterious natures of matters.Here,we present an interesting scheme of isolated electron wave packet diffraction with a few-cycle laser pulse and an extreme ultraviolet (XUV) pulse.The diffraction fringes are clearly present in the laser dressed XUV photoelectron spectra,strongly resembling the Airy diffraction pattern of optical waves.This phenomenon suggests a great potential of attosecond diffractometry.According to this scheme we also propose a simple method to determine the XUV pulse duration from the photoelectron spectra with a rather high resolution.  相似文献   

19.
We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic, which is nonlinear wave alternative of the Black Scholes model. These rogue wave solutions may be used to describe the possible physical mechanisms for rogue wave phenomenon in financial markets and related fields.  相似文献   

20.
We use the 1-fold Darboux transformation (DT) of an inhomogeneous nonlinear Schro¨dinger equation (INLSE) to construct the deformed-soliton, breather, and rogue wave solutions explicitly. Furthermore, the obtained first-order deformed rogue wave solution, which is derived from the deformed breather solution through the Taylor expansion, is different from the known rogue wave solution of the nonlinear Schro¨dinger equation (NLSE). The effect of inhomogeneity is fully reflected in the variable height of the deformed soliton and the curved background of the deformed breather and rogue wave. By suitably adjusting the physical parameter, we show that a desired shape of the rogue wave can be generated. In particular, the newly constructed rogue wave can be reduced to the corresponding rogue wave of the nonlinear Schro¨dinger equation under a suitable parametric condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号