首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Film bulk acoustic resonator (FBAR) with solidly mounted resonator (SMR)-type is carried out by rf magnetic sputtering. To fabricate SMR-type FBAR, alternative high and low acoustic impedance layers, Mo/Ti multilayer, are adopted as Bragg reflector deposited by dc magnetron sputtering. The influences of sputtering pressure, substrate temperature and sputtering power on the surface roughness of Bragg reflector layer are discussed. From the atom force microscopy (AFM) analysis, the surface roughness of the Bragg reflector is improved remarkably by controlling deposition conditions. Under the appropriate sputtering condition, AlN thin films with highly c-axis-preferred orientation are deposited by rf magnetron sputtering. The performance of fabricated Mo/Ti SMR shows that the electromechanical coupling coefficient is 3.89%, the series and parallel resonant frequencies appear at 2.49 and 2.53GHz, with their quality factors 134.2 and 97.6, respectively.  相似文献   

2.
《Ultrasonics》2014,54(6):1504-1508
We describe the fabrication and frequency characterization of different structures intended for the lateral excitation of shear modes in AlN c-axis-oriented films. AlN films are deposited on moderately doped silicon substrates covered either with partially metallic or fully insulating Bragg mirrors, and on insulating glass plates covered with insulating acoustic reflectors. TiOx seed layers are used to promote the growth of highly c-axis oriented AlN films, which is confirmed by XRD and SAW measurements. The excitation of the resonant modes is achieved through coplanar Mo electrodes of different geometries defined on top of the AlN films. All the structures analyzed display a clear longitudinal mode travelling at 11,000 m/s, whose excitation is attributed to the direction of the electric field (parallel to the c-axis) below the electrodes; this is enhanced when a conductive plane (metallic layer or Si substrate) is present under the piezoelectric layer. Conversely, only a weak shear resonance (6,350 m/s) is stimulated through the effect of coplanar electrodes, which is explained by the weakness of the electric field strength parallel to the surface between the electrodes. A significantly more effective excitation of shear modes can be achieved by normal excitation of AlN films with tilted c-axis.  相似文献   

3.
We fabricated a self-assembled monolayer (SAM) modified solid mounted resonator (SMR) for organophosphate vapor detection. The SMR device consisted of a piezoelectric stack and an all-metal Bragg's reflector. The electrode surface is chemically modified with a Cu2+/11-mercaptoundecanoic acid SAM to capture organophosphate compounds. After chemical modification, both the resonance frequency and the Q-factor decrease. Fourier transform infrared external reflection spectroscopy was performed to verify the formation of SAM. Adsorption of organophosphate compounds onto the SAM increases its mass, and the resonance frequency proportionally goes down. The testing results show that the modified SMR can yield a rapid, sensitive, reversible and reproducible response to nerve-agent (dimethyl methyl phosphonate) vapor. This study proves that using the SAM modified SMR to detect trace organophosphate vapor is feasibility.  相似文献   

4.
The resonance frequency of the longitudinal vibrations of rods, and of the extensional and shear vibrations of plates is influenced by electrodes. It was found experimentally that the relative change in resonance frequency caused by depositing electrodes is proportional to the ratio of the masses of the electrodes and resonator. The paper gives the theoretical derivation of an expression for the proportionality constantK for longitudinal types of vibrations of plates and rods. The proportionality constantK is dependent on the density, elastic properties and dimensions of the piezoelectric resonator and electrodes. The theoretical behaviour of the constantK for a piezoelectric resonator of orientation GT is compared with the experimentally obtained values.  相似文献   

5.
The solidly mounted resonator (SMR) is composed of a piezoelectric thin film sandwiched between two electrodes and a Bragg reflector that comprises alternating high and low acoustic impedance with a thickness of a quarter wavelength. In this study, the combination Mo/SiO2 is chosen as high/low acoustic impedance materials to form a Bragg reflector; aluminum nitride (AlN) is utilized as the piezoelectric layer. The purpose of this study is to investigate the resonance characteristics of solidly mounted resonators with various pairs of reflecting layers. The experimental results yield an electromechanical coupling (keff2)(k_{\mathrm{eff}}^{2}) of 1.926% and quality factor (Q) of 254 with three pairs of Mo/SiO2 layers. The figure of merit (FOM), which is defined as the product of electromechanical coupling and quality factor, has a maximum of 489 with three pairs of Mo/SiO2 layers.  相似文献   

6.
薄膜体声波谐振器(FBAR)力传感器作为一种新型的谐振式传感器,力敏特性是其设计原理。以FBAR微加速度计为例研究了工作在纵波模式,采用具有纤锌矿结构的AlN作为压电薄膜的FBAR,施加应力载荷后,其弹性常数改变导致FBAR谐振频率偏移的力敏特性。首先,采用有限元(FEA)静力学仿真,得到惯性力载荷作用下集成在硅微悬臂梁上的压电薄膜的应力分布;选取最大应力值作为载荷,基于第一性原理计算纤锌矿AlN的弹性系数与应力的关系式,预测惯性力载荷作用下AlN弹性系数的最大变化量。其次,采用谐响应分析,对比空载和不同惯性力载荷作用下FBAR微加速度计的谐振频率和偏移特性,预测FBAR微加速度计的加速度-谐振频率偏移特性。最后仿真分析得到:惯性力载荷作用下,FBAR微加速度计的谐振频率向高频偏移,灵敏度约为数kHz/g;其加速度增量-谐振频率偏移特性曲线具有良好的线性度。  相似文献   

7.
In this paper, we fabricate a pure-shear mode film bulk acoustic resonator based on c-axis oriented ZnO film. The resonator is consisted of an in-plane electrode, a highly c-axis oriented ZnO film and a SiO2/W Bragg reflector. The shear mode wave is excited by the lateral electric field. The resonator works in a pure-shear mode with the resonance frequency near 1.5 GHz and the Q-factor of 479 in air. There is no obvious longitudinal mode resonance in the frequency response, which can be explained that the electric field component normal to the surface is very weak and the Bragg reflector has the effective frequency selectivity for the shear mode. Importantly for sensors, the immersion into de-ionized water and glycerol liquid still allows for a Q-factor up to 335 and 220, respectively. This resonator shows the potential as mass loading sensors for biochemical application.  相似文献   

8.
This paper focuses on the fabrication of film bulk acoustic-wave resonator (FBAR) comprising an aluminum nitride (AlN) piezoelectric thin film sandwiched between two metal electrodes and located on a silicon substrate with a low-stress silicon nitride (Si3N4) support membrane for high frequency wireless applications, and analyzes the optimization of the thin AlN film deposition parameters on Mo electrodes using the reactive RF magnetron sputter system. Several critical parameters of the sputtering process such as RF power and Ar/N2 flow rate ratio were studied to clarify their effects on different electrodes characteristics of the AlN films. The experiment indicated that the process for Mo electrode was easier compared with that of the Pt/Ti or Au/Cr bi-layer electrode as it entailed only one photo resist and metal deposition step. Besides, Pt/Ti or Au/Cr electrodes reduced the resonance frequency due to their high mass density and low bulk acoustic velocity. Compared with the case of the Al bottom electrode, there is no evident amorphous layer between the Mo bottom electrode and the deposited AlN film. The characteristics of the FBAR devices depend not only upon the thickness and quality of the AlN film, but also upon the thickness of the top electrode and the materials used. The results indicate that decreasing the thickness of either the AlN film or the top electrode increases the resonance frequency. This suggests the potential of tuning the performance of the FBAR device by carefully controlling AlN film thickness. Besides, increasing either the thickness of the AlN film or higher RF power has improved a stronger c-axis orientation and tended to promote a narrower rocking curve full-width at half-maximum (FWHM), but increased both the grain size and the surface roughness. An FBAR device fabricated under optimal AlN deposition parameters has demonstrated the effective electromechanical coupling coefficient (k eff2) and the quality factor (Q f x ) are about 1.5% and 332, respectively.  相似文献   

9.
本文研制了一种基于磁控溅射掺镁氧化锌(Mg_xZn_(1-x)O)压电薄膜的S波段固体装配型体声波谐振器(SMR-FBAR)。相比传统的氧化锌(ZnO)薄膜,Mg_xZn_(1-x)O具有高纵波声速,高电阻率优点,而且Mg原子以替位或填隙的方式进入晶格,没有改变ZnO的铅锌矿结构。通过优化磁控溅射参数的方法,获得了c轴方向生长良好的Mg_xZn_(1-x)O薄膜,并成功制得了串联谐振频率以及并联谐振频率分别在2.416 GHz和2.456 GHz的谐振器,测得其有效机电耦合系数为4.081%,回波损耗(S11)为-23.89 d B。这种SMR机械强度高、可靠性高、尺寸小,具有可立体集成到CMOS芯片表面的优势。  相似文献   

10.
An experimental study of the shear parameters of viscoelastic liquids is carried out by the acoustic resonance method based on the changes in the natural frequency and Q factor of a piezoelectric quartz resonator. The liquid to be studied is placed between a stationary quartz strap and the piezoelectric quartz crystal vibrating at the resonance frequency. For a set of drilling muds, the values of the real and imaginary shear moduli are obtained at a frequency of 74 kHz. The measurements are performed with a liquid layer thickness much smaller than the shear wavelength. It is shown that the shear modulus decreases with increasing strain amplitude. A cluster model based on the Isakovich-Chaban nonlocal diffusion theory is proposed for explaining the low-frequency viscoelastic relaxation process.  相似文献   

11.
The (1 0 3)-oriented aluminum nitride (AlN) thin film is an attractive piezoelectric material for the applications in surface acoustic wave and film bulk acoustic wave resonator devices. In this work, we repot structural and mechanical characteristics of (1 0 3) AlN thin films deposited onto (1 0 0) Si substrates with radio frequency magnetron sputtering at different sputtering powers at 150, 250, and 350 W. Comparisons were made on their crystalline structures with X-ray diffraction, surface morphologies with atomic force microscopy, mechanical properties with nanoindentation, and tribological responses with nanoscratch. Results indicate that for the sputtering power of 350 W, a high-quality (1 0 3) AlN thin film, whose hardness is 18.91 ± 1.03 GPa and Young's modulus is 242.26 ± 8.92 GPa, was obtained with the most compact surface condition.  相似文献   

12.
We study the effects of couplings to flexure and face-shear modes on the admittance of an AT-cut quartz plate thickness-shear mode resonator. Mindlin’s two-dimensional equations for piezoelectric plates are employed. Electrically forced vibration solutions are obtained for three cases: pure thickness-shear mode alone; two coupled modes of thickness shear and flexure; and three coupled modes of thickness shear, flexure, and face shear. Admittance is calculated and its dependence on the driving frequency and the length/thickness ratio of the resonator is examined. Results show that near the thickness-shear resonance, admittance assumes maxima, and that for certain values of the length/thickness ratio, the coupling to flexure causes severe admittance drops, while the coupling to the face-shear mode causes additional admittance changes that were previously unknown and hence are not considered in current resonator design practice.  相似文献   

13.
This study investigates high-performance ZnO piezoelectric films used for thin film bulk acoustic resonators (TFBAR). The ZnO piezoelectric film was deposited on a Pt/Ti electrode using an RF magnetron sputter by a two-step method at room temperature. The Pt/Ti electrode was deposited by a DC sputtering system, on which, ZnO piezoelectric films were deposited in one step and in two steps to minimize roughness in the first step and produce the preferred orientation in the second. Both field-emission scanning electron microscopy (FESEM) and atom force microscopy (AFM) revealed that ZnO piezoelectric film deposited by two-step sputtering exhibited favorable characteristics, such as a rigidly precise surface structure with surface roughness of 7.37 nm, even better than in one-step sputtering. Examining the ZnO thin film by X-ray diffraction (XRD) showed a much higher c-axis-preferring orientation than in one-step sputtering. The reflection coefficient of the resonator device was measured using an HP8720 network analyzer. The frequency response of the FBAR device exhibited a return loss of -25 dB at a resonant frequency of 2212 MHz with a high coupling coefficient of 6.7%. PACS 68.55.Jk; 43.35.Ns; 81.15.-z  相似文献   

14.
Elasticity and polarization of GaxAl1-xN alloys subjected to uniaxial and homogeneous biaxial compression are calculated using first-principles methods. The uniaxial compression along the c-axis reduces Young’s modulus along the c-axis, and enhances bulk modulus and total polarization, whereas the biaxial compression in the plane perpendicular to the c-axis enhances bulk and Young’s moduli. It is also found that when the in-plane biaxial compression is applied by constraining the a-axis lattice constant to that of AlN, the bulk and Young’s moduli dramatically increase with increasing Ga concentration, and the total polarization could be suppressed, even annihilated, and finally enhanced by controlling Ga concentration.  相似文献   

15.
The hydrostatic pressure behavior of red-emitting diode lasers packaged on Si, AlN, and diamond submounts is studied in the 0–2 GPa range by emission and photocurrent spectroscopy. Photocurrent spectroscopy allows for simultaneous measurement of the InGaP quantum well and (Al0.5Ga0.5)0.5In0.5P waveguide. A broadening of the absorption edge of the waveguide is observed for all devices and explained by the pressure-induced direct-to-indirect transition in this material. For the QW resonance, distinct differences are observed for differently packaged devices. Thus, very low pressure tuning rates are demonstrated for devices packaged on diamond and AlN submounts and explained by the presence of shear strain components. Consistently we find the device packaged on Si to be least affected by the strain caused by the pressure cycling.  相似文献   

16.
The effect electronic tuning has on the frequency of the acoustic resonance of an acousto-optic modulator intended for active laser mode locking is studied theoretically and experimentally. The problem of exciting a Fabri–Perot acoustic resonator with a plate-like piezoelectric transducer is solved in the approximation of plane acoustic waves, with allowance for the real parameters of the HF generator and the matching elements of the transducer and the generator. Expressions for the basic electrical and acoustic parameters are obtained. Theoretical analysis confirms the frequency shift effect of acoustic resonances, observed earlier experimentally upon varying the matching electrical elements. The experiment is performed using an acousto-optic quartz cell and a lithium niobate transducer.  相似文献   

17.
The results of numerical and experimental analysis of the parameters of a single-frequency microwave thin-film electroacoustic resonator based on an (0001)AlN piezofilm with an acoustic reflector operating at a frequency of 10 GHz are presented. The effect of the reflector design on the resonator characteristics is considered. Using the modified Butterworth-Van Dyke model, it was shown that the ohmic resistance of electrodes and entrance paths substantially decreases the Q-factor at the resonance frequency of series and the acoustic losses in the resonator deteriorate the Q-factor at the parallel resonance frequency.  相似文献   

18.
The AlN-based solidly mounted resonator operated in thickness shear mode using lateral field excitation is presented both in theory and experiment. The resonator configuration consists of the electrodes parallel to the surface, a highly c-oriented AlN film and an acoustic Bragg reflector. The theoretical analysis of the Christoffel equation predicts that the electric field in any direction normal to the c-axis can excite the shear mode wave along the thickness direction. The electric field characteristics are calculated by finite element modeling in order to design the electrode frame. The testing results of the finished devices show that the thickness shear mode wave can be excited by the lateral electric field in c-axis oriented AlN solidly mounted resonators. The experimental frequency corresponds well to the theoretical one. The resonators operated in thickness shear mode have resonant frequencies near 2 GHz with an average Q s value of 323 and a Keff2K_{\mathrm{eff}}^{2} value of 0.83%.  相似文献   

19.
LiNbO 3 has been found attractive for lateral field excitation (LFE) applications due to its high piezoelectric coupling. In this paper, bulk acoustic wave propagation properties for LiNbO 3 single crystal excited by a lateral electric field have been investigated using the extended Christoffel-Bechmann method. It is found that the LFE piezoelectric coupling factor for c mode reaches its maximum value of 95.46% when ψ = 0 for both (yxl)-58 and (yxwl)±60 /58 LiNbO 3 . The acoustic wave phase velocity of c mode TSM (thickness shear mode) changes from 3456 m/s to 3983 m/s as a function of ψ. Here ψ represents the angle between the lateral electric field and the crystallographic X-axis in the substrate major surface. A 5 MHz LFE device of (yxl)-58 LiNbO 3 with ψ = 0 was designed and tested in air. A major resonance peak was observed with the motional resistance as low as 17 and the Q-factor value up to 10353. The test result is well in agreement with the theoretical analysis, and suggests that the LFE LiNbO 3 device can be a good platform for high performance resonator or sensor applications.  相似文献   

20.
YBa2Cu3O7- thin films may be epitaxially grown, on suitably prepared substrates, with a non-zero tilt angle between the film's c-axis and its surface normal. These films are fast, room-temperature, thermoelectric detectors with a response extending from UV to FIR wavelengths. We have found that tilted c-axis films, when cooled below Tc, also exhibit a fast and sensitive Josphson photoresponse to 250 µm and 496 µm radiation, in contrast to the nil response of c-axis normal films. It is believed that the non-zero component of the radiation electric field along the c-axis of tilted films modulates relatively weak Josephson critical currents in this direction, generating a photoresponse from current biased samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号