首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bianchi type-II cosmological solutions of massive strings have been investigated in the presence as well as absence of the magnetic field. The energy conditions for a cloud of strings coupled to the Einstein equations have been examined. The physical features of the models have also been discussed.  相似文献   

2.
In this study, we have investigated the dynamics of non-static Gödel type rotating universe with massive scalar field, viscous fluid and heat flow in the presence of cosmological constant. For various cosmic matter forms, the behavior of the cosmological constant (Λ), shear (η) and bulk (ξ) viscosity coefficients and other kinematic quantities have studied in the early universe. We have showed the decay of massive scalar field in the non-static rotating Gödel type universe and we have obtained constant scalar field with and without source density. Also, we have investigated the effects of massive scalar field on the matter density and pressure. From solutions of the field equations, we have a cosmological model with non-zero expansion, shear, heat flux and rotation. Also some physical and geometrical aspects of the model discussed.  相似文献   

3.
A model of a cloud formed by massive strings is studied in the context of the usual general relativity. This model is used as a source of Bianchi type VI 0 massive with magnetic field and bulk viscosity. To get a determinate model, we assume that the expansion (θ) in the model is proportional to the shear (σ) and also the fluid obeys the barotropic equation of state. The behaviour of the models from physical and geometrical aspects in presence and absence of magnetic field and bulk viscosity is discussed.  相似文献   

4.
The Bianchi type-V cosmological solutions of massive strings have been investigated in the theory based on Lyra’s geometry in normal gauge, in the presence as well as absence of the magnetic field. The physical and kinematical behaviors of the models have also been discussed.  相似文献   

5.
In this paper anisotropic cosmological models with bulk viscosity and quintessence have been studied. Some exact solutions of Einstein field equations with bulk viscosity and quintessence on the background of anisotropic Bianchi Type I space-time are obtained. The new cosmological models approach to isotropy with evolution of the universe. Physical properties of these cosmological models have also been discussed.  相似文献   

6.
Some cylindrically symmetric inhomogeneous viscous-fluid cosmological models with electromagnetic field are obtained. To get a solution a supplementary condition between metric potentials is used. The viscosity coefficient of bulk viscous fluid is assumed to be a power function of mass density. Without assuming anyad hoc law, we obtain a cosmological constant as a decreasing function of time. The behaviour of the electromagnetic field tensor together with some physical aspects of the model are also discussed.  相似文献   

7.
The paper deals with a spatially homogeneous and totally anisotropic Bianchi II cosmological models representing massive strings in normal gauge for Lyra’s manifold. The modified Einstein’s field equations have been solved by applying variation law for Hubble’s parameter. This law generates two type of solutions for average scale factor, one is of power law type and other is of exponential law type. The power law describes the dynamics of Universe from big bang to present epoch while exponential law seems reasonable to project dynamics of future Universe. It has been found that the displacement vector (β) is a decreasing function of time and it approaches to small positive value at late time, which is collaborated with Halford (Aust. J. Phys. 23, 863, 1970) as well as recent observations of SN Ia. The study reveals that massive strings dominate in early Universe and eventually disappear from Universe for sufficiently large time, which is in agreement with the current astronomical observations.  相似文献   

8.
Some cosmological solutions of massive strings are obtained in Bianchi I space-time following the techniques used by Letelier and Stachel. A class of solutions corresponds to string cosmology associated with/without a magnetic field and the other class consists of pure massive strings, obeying the Takabayashi equation of stateρ=(1+W)λ.  相似文献   

9.
Plane symmetric viscous fluid cosmological models of the universe with a variable cosmological term are investigated. The viscosity coefficient of bulk viscous fluid is assumed to be a power function of mass density whereas the coefficient of shear viscosity is to be proportional to rate of expansion in the model. We have also obtained a special model in which the shear viscosity is assumed to be zero. The cosmological constant Λ is found to be a decreasing function of time and a positive which is supported by results from recent supernovae Ia observations. Some physical and geometric properties of the models are also discussed.  相似文献   

10.
The present paper envisages a spatially homogeneous and anisotropic Bianchi II massive string cosmological models with time-decaying Λ term in general relativity. By using the variation law of Hubble’s parameter, the Einstein’s field equations have been solved for two general cases. The first case involving a power law solution describes the dynamics of universe from big bang to present epoch while the second case admit an exponential solution seems reasonable to project dynamics of future universe. We observed that massive strings dominate in early universe and eventually disappear at late time, which is consistent with the current astronomical observations. It has been found that the cosmological constant (Λ) is a decreasing function of time and it approaches to small positive value at sufficiently large time. The thermodynamic properties of anisotropic Bianchi II universe are studied and also the absolute temperature and entropy distribution are given explicitly. The relations between thermodynamic parameters and cosmological constant Λ has been established. Physical behavior of the derived model is elaborated in detail.  相似文献   

11.
Following the techniques used by Letelier and Stachel some exact Bianchi III cosmological solutions of massive strings in the presence of magnetic field are obtained and their physical features are discussed. Some string solutions in which magnetic fields are absent are also discussed.  相似文献   

12.
We present bulk viscous Bianchi type V cosmological models with time-dependent cosmological term Λ. Exact solutions of Einstein field equations have been obtained by assuming shear scalar σ proportional to volume expansion θ. The coefficient of bulk viscosity is taken to be power function of energy density ρ or volume expansion θ. In these models cosmological term Λ come out to be negative. It is found that models obtained are expanding, shearing and non-rotating. They do not approach isotropy for large values of time t. Some observational parameters for the model have also been discussed.  相似文献   

13.
We study Abelian strings in a fixed de Sitter background. We find that the gauge and Higgs fields extend smoothly across the cosmological horizon and that the string solutions have oscillating scalar fields outside the cosmological horizon for all currently accepted values of the cosmological constant. If the gauge to Higgs boson mass ratio is small enough, the gauge field function has a power-like behaviour, while it is oscillating outside the cosmological horizon if Higgs and gauge boson mass are comparable. Moreover, we observe that Abelian strings exist only up to a maximal value of the cosmological constant and that two branches of solutions exist that meet at this maximal value. We also construct radially excited solutions that only exist for non-vanishing values of the cosmological constant and are thus a novel feature as compared to flat space–time. Considering the effect of the de Sitter string on the space–time, we observe that the deficit angle increases with increasing cosmological constant. Lensed objects would thus be separated by a larger angle as compared to asymptotically flat space–time.  相似文献   

14.
The LRS Bianchi type-I and type-II string cosmological models are studied when the source for the energy momentum tensor is a bulk viscous stiff fluid containing one dimensional strings together with zero-mass scalar field. We have obtained the solutions of the field equations assuming a functional relationship between metric coefficients when the metric is Bianchi type-I and constant deceleration parameter in case of Bianchi type-II metric. The physical and kinematical properties of the models are discussed in each case. The effects of Viscosity on the physical and kinematical properties are also studied.  相似文献   

15.
16.
We have considered some cosmological solutions with variable gravitational and cosmological constants with bulk viscosity. It is found that the solutions are singularity free and the deceleration parameter is in general not a constant unless we assume perfect fluid with equation of state in the standard cosmologies. Moreover, the deceleration parameter is a function of the scale factor and changes sign with evolution, so our solution is a generalization of those obtained by Arbab I. Arbab. The introduction of viscosity not only free from singularity but also give the deceleration parameter a freedom to vary with scale factor. Thus, a viscous cosmological fluid gives a more general situation in the early universe.  相似文献   

17.
Bianchi type I cosmological models with time-varying cosmological constant Λ and bulk viscous fluid are investigated. Cosmic matter is chosen to obey a barotropic equation of state. Exact solutions of Einstein’s field equations are obtained assuming the volume expansion θ proportional to the eigen values of shear tensor σ ij . Physical and kinematical properties of the models are discussed considering bulk viscosity to be a power function of matter density.  相似文献   

18.
A model of a cloud formed by massive strings is used as a source of LRS Bianchi type-II with time-decaying vacuum energy density Λ. To construct string cosmological models, we have used the energy–momentum tensor for such strings as formulated by Letelier (1983). The high nonlinear field equations have been solved for two types of strings: (i) massive string and (ii) Nambu string. The expansion θ in the model is assumed to be proportional to the shear σ. This condition leads to A = βB m , where A and B are the metric coefficients, m is a constant and β is an integrating constant. Our models are in accelerating phase which is consistent with the recent observations of supernovae type-Ia. The physical and geometrical behaviour of these models are also discussed.  相似文献   

19.
HASSAN AMIRHASHCHI 《Pramana》2013,80(4):723-738
In this paper, the effect of electromagnetic field in the string Bianchi type-VI0 Universe is investigated. Einstein’s field equations have been solved exactly with suitable physical assumptions for two types of strings: (i) massive strings and (ii) Nambu strings. It is found that when the Universe is dominated by massive strings, the existence of electromagnetic field is necessary as it accelerates the expansion of the Universe. But when our Universe is dominated by Nambu strings, the electromagnetic field does not have significant effect on the evolution of the Universe. We have also shown that the early massive string-dominated Universe got converted to Nambu string-dominated Universe later. Our models are derived from an early deceleration phase to an accelerating phase which is consistent with the recent observations of supernovae type-Ia. The physical and geometrical behaviour of these models are also discussed.  相似文献   

20.
Rotating cosmological models under the influence of both shear and bulk viscosity, together with scalar field and heat flow, are studied. Exact solutions of the field equations are obtained. The solutions have nonzero expansion, shear, and rotation. The properties of the solutions are studied and the temperature distribution is also given explicitly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号