首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutrino mixing lead to a non zero contribution to the dark energy of the universe. We assume that the neutrino masses and mixing arise through physics at a scale intermediate between Planck Scale and the electroweak scale. The mechanism of neutrino mixing is a possible candidate to contribute the cosmological dark energy. Quantum gravitational (Planck scale) effects lead to an effective SU(2) L ×U(1) invariant dimension-5 Lagrangian involving neutrino and Higgs fields, which gives rise to additional terms in neutrino mass matrix. There additional term can be considered to be perturbation of the GUT scale bi-maximal neutrino mass matrix. We assume that the gravitational interaction is flavor. In this paper, we discuss the three flavor neutrino mixing and cosmological dark energy contributes due to Planck scale effects.  相似文献   

2.
An asymmetry between the probabilities P(ν μ ν e ) and \(P(\bar {\nu _{\mu }}\rightarrow \bar {\nu _{e}})\) would be direct indication of CP violation at the fundamental level. Planck scale effects on neutrino mixing, we have derived the mixing angles of neutrino flavour due to Planck scale effects. It has been shown that Jarlskog determinant remains nearly invariant above the GUT scale.  相似文献   

3.
We consider non renormalization 1/M x interaction term as a perturbation of the neutrino mass matrix. We find that for the degenerate neutrino mass spectrum. We assume that the neutrino masses and mixing arise through physics at a scale intermediate between Planck Scale and the electroweak scale. We also assume, above the electroweak breaking scale, neutrino masses are nearly degenerate and their mixing is bimaximal. The perturbation generates a non zero value of θ 13, which is within reach of the high performance neutrino factory. In this paper, we find that the non zero value of θ 13 due to Planck scale effects indicates the possibility of CP violation.  相似文献   

4.
We consider non-renormalizable interaction term as perturbation of the conventional neutrino mass matrix. We assume that the neutrino masses and mixing arise through physics at a scale intermediate between Planck scale and the electroweak breaking scale. We also assume that, just above the electroweak breaking scale, neutrino masses are nearly degenerate and their mixing is tetra-maximal. Quantum gravity (Planck scale effects) lead to an effective SU(2) L ×U(1) invariant dimension-5 Lagrangian involving neutrino and Higgs fields. On electroweak symmetry breaking, this operator gives rise to correction to the above masses and mixing. These additional term can be consider as a perturbation to the Tetra-maximal mass matrix. The nature of gravitational interaction demands that the element of this perturbation matrix should be independent of flavor indices. We compute the deviation of three neutrino mixing angles due to Planck scale effects. We find that there is no change in θ 13 and θ 23 but change in solar mixing angle θ 12 is suppress by 3.0°.  相似文献   

5.
Quantum gravity (Planck scale effects) lead to an effective SU(2) L ×U(1) invariant dimension-5 Lagrangian involving neutrino and Higgs fields. On symmetry breaking, this operator gives rise to correction to the above masses and mixing. The gravitational interaction M X =M pl , we find that for degenerate neutrino mass spectrum, it is shown that the Majorana phase of the neutrino mixing matrix can effects in neutrino oscillation probability.  相似文献   

6.

We study the Planck scale effects on Jarlskog determiant in the four flavor framework. On electroweak symmetry breaking, quantum gravitational effects lead to an effective SU(2) × U(1) invariant dimension-5 Lagrangian including neutrino and Higgs forces, which perturbed the neutrino mass term and produce an extra terms in the neutrino mass matrix. We consider that gravitational interaction is independent from flavor and compute the Jarlskog determiant due to Planck scale effects. In the case of leptonic sector, the strentgh of CP violation is measured by Jarlskog determiant. We applied our approach to study Jarlskog determinant in the four flavor neutrino mixing above the GUT scale.

  相似文献   

7.
8.
The phase shift of neutrino oscillation could be discussed in the frame work of quantum gravity. Quantum gravity (Planck scale effects) leads to an effective SU(2) L ×U(1) invariant dimension-5 Lagrangian involving, neutrino and Higgs fields. On symmetry breaking, this operator gives rise to correction to the neutrino masses and mixing. We compute the neutrino oscillation phase due to Planck scale effects. The gravitational interaction (M X =M pl ) demands that the element of this perturbation matrix should be independent of flavor indices. In this paper, we study the quantum gravity effects on neutrino oscillation phases, namely modified dispersion relation for neutrino oscillation phases.  相似文献   

9.
ILA GARG 《Pramana》2016,86(2):315-323
Supersymmetric see-saw slow roll inflection point inflation occurs along a MSSM D-flat direction associated with gauge invariant combination of Higgs, slepton and right-handed sneutrino at a scale set by the right-handed neutrino mass \(M_{{\nu }^{c}} \sim 10^{6}\!\,-\,\!10^{13}\) GeV. The tensor to scalar perturbation ratio r~10?3 can be achieved in this scenario. However, this scenario faced difficulty in being embedded in the realistic new minimal supersymmetric SO(10) grand unified theory (NMSO(10)GUT). The recent discovery of B-mode polarization by BICEP2, changes the prospects of NMSO(10)GUT inflation. Inflection point models become strongly disfavoured, as the trilinear coupling of SUSY see-saw inflation potential gets suppressed relative to the mass parameter favoured by BICEP2. Large values of r≈0.2 can be achieved with super-Planck scale inflaton values and mass scales of inflaton ≥10 13 GeV. In NMSO(10)GUT, this can be made possible with an admixture of heavy Higgs doublet fields, i.e., other than MSSM Higgs field, which are present and have masses of order GUT scale.  相似文献   

10.
We calculate the Higgs mass and the top mass starting from the principle that there are two, essentially degenerate minima in the Higgs effective potential; the second is at about the Planck energy scale M P = 1.2 × 1019 GeV. Thus the parameter of the quartic self-coupling λ h vanishes, as does β λH at M P. The new element is the addition of a quantum interaction term which couples the square of the Higgs field to the square of a pseudoscalar field, in the domain of the energy scale between about 1014 GeV and M P. We modify β λH at one loop. The pseudoscalar field which is introduced may be the field which is responsible for a spontaneous breakdown of discrete symmetry — for CP noninvariance at an energy scale of (1015–1016) GeV. The result is then a closer value for m H ? 163 GeV for the top pole-mass M t ? 190 GeV; both values are now close to the electroweak scale parameter $\langle {\phi _H}\rangle /\sqrt 2 = 175{\text{ GeV}}$ . In terms of dimensionless running coupling parameters, which determine the masses near to the electroweak scale, we get $\sqrt {{\lambda _H}} \cong 0.06$ and $gt/\sqrt 2 \cong 0.72$ , values that are close to each other and close to unity.  相似文献   

11.
Neutrinos are elementary particles in the Standard Model. Neutrino oscillation is a quantum mechanical phenomenon beyond the Standard Model. Neutrino oscillation can be described by two independent mass-squared differences Δm 21 2 , Δm 31 2 (or Δm 32 2 ) and a 3 × 3 unitary matrix, containing three mixing angles θ 12, θ 23, θ 13, and one charge-parity (CP) phase. θ 12 is about 34° and determined by solar neutrino experiments and the reactor neutrino experiment KamLAND. θ 23 is about 45° and determined by atmospheric neutrino experiments and accelerator neutrino experiments. θ 13 can be measured by either accelerator or reactor neutrino experiments. On Mar. 8, 2012, the Daya Bay Reactor Neutrino Experiment reported the first observation of non-zero θ 13 with 5.2 standard deviations. In June, with 2.5× previous data, Daya Bay improved the measurement of sin22θ 13 = 0.089 ± 0.010(stat) ± 0.005(syst).  相似文献   

12.
13.
The overview is devoted to quantum electrodynamics (QED) and the Standard Model in the Foldy-Wouthuysen representation. The Hamiltonian H FW in the form of a power series in charge e is obtained as applied to the electromagnetic interaction in the FW representation. Quantum electrodynamics in lowest-order perturbation theory is examined. Calculations of specific QED processes are presented. For external fermion lines (p f 2 = m 2), a possibility to expand the scattering matrix, in powers of the coupling constant with matrix elements, not including fermion propagators, is shown. To take into account particle-antiparticle interaction, a modification of the Foldy-Wouthuysen representation is proposed. Fermions in the modified FW representation can be in two states that are characterized by the sign of a third component of the isotopic spin T f 3 . The sign of T f 3 is connected with the sign at mass terms in the modified Hamiltonian H FW. Real fermions (p f 2 = m f 2 ), as well as antifermions, can interact with each other, while real fermions with a given sign of T f 3 can only interact with real antifermions with the opposite sign of T f 3 , and vice versa. The formulation of the Standard Model in the FW representation does not necessarily require an interaction of Higgs bosons with fermions. In this approach, the role of Higgs bosons narrows considerably as they are responsible only for gauge invariance of the theory and interact only with gauge bosons. Quantum electrodynamics in the FW representation is invariant under C, P, and T transformations. Weak interaction does not conserve C and P parity, but conserves combined CP parity. The theory allows a connection of CP violation and total or partial violation of isotopic symmetry in the modified Foldy-Wouthuysen representation.  相似文献   

14.
We define a CP violating Dalitz plot asymmetry αas and compare it to the usual CP violating rate asymmetry αsy. Depending on the decay mechanisms, αas can be larger than αsy. We calculate αas, αsy for different models for the decay \(B \to \pi p\bar p\) , using the final state interaction ofp, \(\bar p\) , π to provide the necessary strong interaction interference phase. The values for αas, αsy we find vary between 0.01 and 0.4%.  相似文献   

15.
The semileptonic three particle decays of the tau provide determinations of the tau neutrino mass. The shift of the maximal energy of the observable final state particles islinear in the neutrino mass. The endpoint energy of the pion and a partially integrated decay rate in τ → πωv τ and τ → πρV τ are sensitive to a neutrino mass smaller than 100 MeV. Thus, the present bound on \(m_{v_\tau } \) can significantly be improved.  相似文献   

16.
Arbitrary regularization dependent parameters in Quantum Field Theory are usually fixed on symmetry or phenomenology grounds. We verify that the quadratically divergent behavior responsible for the lack of naturalness in the Standard Model (SM) is intrinsically arbitrary and regularization dependent. While quadratic divergences are welcome for instance in effective models of low energy QCD, they pose a problem in the SM treated as an effective theory in the Higgs sector. Being the very existence of quadratic divergences a matter of debate, a plausible scenario is to search for a symmetry requirement that could fix the arbitrary coefficient of the leading quadratic behavior to the Higgs boson mass to zero. We show that this is possible employing consistency of scale symmetry breaking by quantum corrections. Besides eliminating a fine-tuning problem and restoring validity of perturbation theory, this requirement allows to construct bounds for the Higgs boson mass in terms of $\delta m^{2}/m^{2}_{H}$ (where m H is the renormalized Higgs mass and δm 2 is the 1-loop Higgs mass correction). Whereas $\delta m^{2}/m^{2}_{H}<1$ (perturbative regime) in this scenario allows the Higgs boson mass around the current accepted value, the inclusion of the quadratic divergence demands $\delta m^{2}/m^{2}_{H}$ arbitrarily large to reach that experimental value.  相似文献   

17.
In the light of the recent Daya Bay result $\theta_{13}^{\mathrm{DB}}=8.8^{\circ}\pm0.8^{\circ}$ , we reconsider the model presented in Meloni et?al. (J. Phys.?G 38:015003, 2011), showing that, when all neutrino oscillation parameters are taken at their best fit values of Schwetz et?al. (New J. Phys. 10:113011,?2008) and where $\theta_{13}=\theta_{13}^{\mathrm{DB}}$ , the predicted values of the CP phase are ????±??/4.  相似文献   

18.
Mikheyev and Smirnov have recently shown that oscillations between two species of neutrinos may be amplified in matter. We give analytic expressions for the energy eigenvalues, all the mixing angles and the CP-violating phase in matter for three generations of neutrinos using the Fritzsch parametrization for the flavor mixing matrix. For clearly separated neutrino masses Δm 31 2 m 21 2 we find two MSW resonance effects—one forv e ?v µ and one forv e ?v τ conversions —which can each be approximated by a separate two neutrino treatment as has been recently shown by Kuo and Pantaleone. Nearly degenerate neutrino masses Δm 31 2 ~Δm 21 2 on the other hand lead to only one resonance region withs 1 2 m 2 no longer necessarily approaching 1 for very high densities.  相似文献   

19.
We investigate \(M^0 - \bar M^0 \) mixing and CP violation in the minimal left-right symmetric gauge model with spontaneous P and CP violation. The dominant contributions to the mixing amplitude including QCD corrections are calculated explicitly for \(B^0 - \bar B^0 \) . While the amount of mixing is not much changed with respect to the standard model leftright symmetry can give rise to significantly larger CP violation in the \(B_s^0 - \bar B_s^0 \) system (up to two orders of magnitude for the dilepton charge asymmetry). Sizable CP violating effects require that the left-right contribution to theK L K S mass difference has the same sign as the standard model contribution. We also comment on \(D^0 - \bar D^0 \) mixing including a careful discussion of the standard model prediction for the short distance part.  相似文献   

20.
We consider non renormalization 1/M x interaction term as a perturbation of the neutrino mass matrix. We find that for the degenerate neutrino mass spectrum. We assume that the neutrino masses and mixing arise through physics at a scale intermediate between Planck Scale and the electroweak scale. We also assume, above the electroweak breaking scale, neutrino masses are nearly degenerate and their mixing is bimaximal. The perturbation generates a non zero value of θ 13, which is within reach of the high performance neutrino factory. In this paper, we find that the non zero value of θ 13 due to Planck scale effects indicates the possibility of CP violation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号