共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the adsorption and reactions of H(2)O(2) on TiO(2) anatase (101) and rutile (110) surfaces by first-principles calculations based on the density functional theory in conjunction with the projected augmented wave approach, using PW91, PBE, and revPBE functionals. Adsorption mechanisms of H(2)O(2) and its fragments on both surfaces are analyzed. It is found that H(2)O(2) , H(2)O, and HO preferentially adsorb at the Ti(5c) site, meanwhile HOO, O, and H preferentially adsorb at the (O(2c))(Ti(5c)), (Ti(5c))(2), and O(2c) sites, respectively. Potential energy profiles of the adsorption processes on both surfaces have been constructed using the nudged elastic band method. The two restructured surfaces, the 1/3 ML oxygen covered TiO(2) and the hydroxylated TiO(2), are produced with the H(2)O(2) dehydration and deoxidation, respectively. The formation of main products, H(2)O(g) and the 1/3 ML oxygen covered TiO(2) surface, is exothermic by 2.8 and 5.0 kcal/mol, requiring energy barriers of 0.8 and 1.1 kcal/mol on the rutile (110) and anatase (101) surface, respectively. The rate constants for the H(2)O(2) dehydration processes have been predicted to be 6.65 × 10(-27) T(4.38) exp(-0.14 kcal mol(-1)/RT) and 3.18 × 10(-23) T(5.60) exp(-2.92 kcal mol(-1)/RT) respectively, in units of cm(3) molecule(-1) s(-1). 相似文献
2.
Absorption of oxygen molecules by water clusters with sizes of 10 ≤ i ≤ 50 is studied by the molecular dynamics method using the modified TIP4P model. It is revealed that the total dipole moment
of the clusters nonmonotonically increases with their sizes. Absorption of O2 molecules tends to raise the static permittivity of the ultradispersed medium formed by the clusters. The real and imaginary
parts of the permittivity of water clusters with absorbed O2 molecules are aperiodic functions of frequency. The permittivity components turn out to be nonmonotonic functions of cluster
sizes. The IR absorption and reflectance spectra are calculated for clusters of pure water and aggregates with absorbed O2 molecules. After the addition of oxygen molecules, the absorption coefficient of the clusters decreases, while the reflection
coefficient increases. It is concluded that the capture of oxygen molecules by atmospheric moisture may reduce the greenhouse
effect.
Original Russian Text ? A.E. Galashev, V.N. Chukanov, O.A. Galasheva, 2006, published in Kolloidnyi Zhurnal, 2006, Vol. 68,
No. 2, pp. 155–160. 相似文献
3.
The reactions of trimethylindium (TMIn) with H2O and H2S are relevant to the chemical vapor deposition of indium oxide and indium sulfide thin films. The mechanisms and energetics of these reactions in the gas phase have been investigated by density functional theory and ab initio calculations using the CCSD(T)/[6-31G(d,p)+Lanl2dz]//B3LYP/[6-31G(d,p)+Lanl2dz] and CCSD(T)/[6-31G(d,p)+Lanl2dz] //MP2/[6-31G(d,p)+Lanl2dz] methods. The results of both methods are in good agreement for the optimized geometries and relative energies. When TMIn reacts with H2O and H2S, initial molecular complexes [(CH3)3In:OH2 (R1)] and [(CH3)3In:SH2 (R2)] are formed with 12.6 and 3.9 kcal/mol binding energies. Elimination of a CH4 molecule from each complex occurs with a similar energy barrier at TS1 (19.9 kcal/mol) and at TS3 (22.1 kcal/mol), respectively, giving stable intermediates (CH3)2InOH and (CH3)2InSH. The elimination of the second CH4 molecule from these intermediate products, however, has to overcome very high and much different barriers of 66.1 and 53.2 kcal/mol, respectively. In the case of DMIn with H2O and H2S reactions, formation of both InO and InS is exothermic by 3.1 and 30.8 kcal/mol respectively. On the basis of the predicted heats of formation of R1 and R2 at 0 K and -20.1 and 43.6 kcal/mol, the heats of formation of (CH3)2InOH, (CH3)2InSH, CH3InO, CH3InS, InO, and InS are estimated to be -20.6, 31.8, and 29.0 and 48.4, 35.5, and 58.5 kcal/mol, respectively. The values for InO and InS are in good agreement with available experimental data. A similar study on the reactions of (CH3)2In with H2O and H2S has been carried out; in these reactions CH3InOH and CH3InSH were found to be the key intermediate products. 相似文献
4.
Three malonato-bridged copper(II) complexes of the formulas [[Cu(H2O)3][Cu(C3H2O4)2(H2O)]]n (1), [[Cu(H2O)4]2[Cu(C3H2O4)2(H2O)]] [Cu(C3H2O4)2(H2O)2][[Cu(H2O)4][Cu(C3H2O4)2(H2O)2]] (2), and [Cu(H2O)4][Cu(C3H2O4)2(H2O)2] (3) (C3H2O4 = malonate dianion) have been prepared, and the structures of the two former have been solved by X-ray diffraction methods. The structure of compound 3 was already known. Complex 1 crystallizes in the orthorhombic space group Pcab, Z = 8, with unit cell parameters of a = 10.339(1) A, b = 13.222(2) A, and c = 17.394(4) A. Complex 2 crystallizes in the monoclinic space group P2/c, Z = 4, with unit cell parameters of a = 21.100(4) A, b = 21.088(4) A, c = 14.007(2) A, and beta = 115.93(2) degrees. Complex 1 is a chain compound with a regular alternation of aquabis(malonato)copper(II) and triaquacopper(II) units developing along the z axis. The aquabis(malonato)copper(II) unit acts as a bridging ligand through two slightly different trans-carboxylato groups exhibiting an anti-syn coordination mode. The four carboxylate oxygens, in the basal plane, and the one water molecule, in the apical position, describe a distorted square pyramid around Cu1, whereas the same metal surroundings are observed around Cu2 but with three water molecules and one carboxylate oxygen building the equatorial plane and a carboxylate oxygen from another malonato filling the apical site. Complex 2 is made up of discrete mono-, di-, and trinuclear copper(II) complexes of the formulas [Cu(C3H2O4)2(H2O)2]2-, [[Cu(H2O)4] [Cu(C3H2O4)2(H2O)2]], and [[Cu(H2O)4]2[Cu(C3H2O4)2(H2O)]]2+, respectively, which coexist in a single crystal. The copper environment in the mononuclear unit is that of an elongated octahedron with four carboxylate oxygens building the equatorial plane and two water molecules assuming the axial positions. The neutral dinuclear unit contains two types of copper atoms, one that is six-coordinated, as in the mononuclear entity, and another that is distorted square pyramidal with four water molecules building the basal plane and a carboxylate oxygen in the apical position. The overall structure of this dinuclear entity is nearly identical to that of compound 3. Finally, the cationic trimer consists of an aquabis(malonato)copper(II) complex that acts as a bismonodentate ligand through two cis-carboxylato groups (anti-syn coordination mode) toward two tetraaqua-copper(II) terminal units. The environment of the copper atoms is distorted square pyramidal with four carboxylate oxygens (four water molecules) building the basal plane of the central (terminal) copper atom and a water molecule (a carboxylate oxygen) filling the axial position. The magnetic properties of 1-3 have been investigated in the temperature range 1.9-290 K. Overall, ferromagnetic behavior is observed in the three cases: two weak, alternating intrachain ferromagnetic interactions (J = 3.0 cm-1 and alpha J = 1.9 cm-1 with H = -J sigma i[S2i.S2i-1 + alpha S2i.S2i+1]) occur in 1, whereas the magnetic behavior of 2 is the sum of a magnetically isolated spin doublet and ferromagnetically coupled di- (J3 = 1.8 cm-1 from the magnetic study of the model complex 3) and trinuclear (J = 1.2 cm-1 with H = -J (S1.S2 + S1.S3) copper(II) units. The exchange pathway that accounts for the ferromagnetic coupling, through an anti-syn carboxylato bridge, is discussed in the light of the available magneto-structural data. 相似文献
5.
Eleonora Freire Daniel R. Vega Ricardo Baggio 《Acta Crystallographica. Section C, Structural Chemistry》2010,66(6):m166-m170
Diaquabis[dihydrogen 1‐hydroxy‐2‐(imidazol‐3‐ium‐1‐yl)ethylidene‐1,1‐diphosphonato‐κ2O,O′]magnesium(II), [Mg(C5H9N2O7P2)2(H2O)2], consists of isolated dimeric units built up around an inversion centre and tightly interconnected by hydrogen bonding. The MgII cation resides at the symmetry centre, surrounded in a rather regular octahedral geometry by two chelating zwitterionic zoledronate(1−) [or dihydrogen 1‐hydroxy‐2‐(imidazol‐3‐ium‐1‐yl)ethylidene‐1,1‐diphosphonate] anions and two water molecules, in a pattern already found in a few reported isologues where the anion is bound to transition metals (Co, Zn and Ni). catena‐Poly[[aquacalcium(II)]‐μ3‐[hydrogen 1‐hydroxy‐2‐(imidazol‐3‐ium‐1‐yl)ethylidene‐1,1‐diphosphonato]‐κ5O:O,O′:O′,O′′], [Ca(C5H8N2O7P2)(H2O)]n, consists instead of a CaII cation in a general position, a zwitterionic zoledronate(2−) anion and a coordinated water molecule. The geometry around the CaII atom, provided by six bisphosphonate O atoms and one water ligand, is that of a pentagonal bipyramid with the CaII atom displaced by 0.19 Å out of the equatorial plane. These CaII coordination polyhedra are `threaded' by the 21 axis so that successive polyhedra share edges of their pentagonal basal planes. This results in a strongly coupled rhomboidal Ca2–O2 chain which runs along [010]. These chains are in turn linked by an apical O atom from a –PO3 group in a neighbouring chain. This O‐atom, shared between chains, generates strong covalently bonded planar arrays parallel to (100). Finally, these sheets are linked by hydrogen bonds into a three‐dimensional structure. Owing to the extreme affinity of zoledronic acid for bone tissue, in general, and with calcium as one of the major constituents of bone, it is expected that this structure will be useful in modelling some of the biologically interesting processes in which the drug takes part. 相似文献
6.
The infrared spectra of the (H(2)O)n-SO(2) complexes trapped in argon matrices have been investigated using Fourier transform infrared spectroscopy. In addition to the 1:1 and 2:1 complexes, the first spectroscopic evidence for the 3:1 complex has been obtained from the spectra of the SO stretching and the OH stretching modes. The observed frequency shifts in the bonded OH stretching region indicate that the hydrogen bonds of the 2:1 and 3:1 complexes are strengthened compared to that of the 1:1 complex, which suggests the cyclic structure of the complexes. 相似文献
7.
Pogány P Kovács A Szécsényi KM Leovac VM 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2008,71(4):1466-1473
In the paper a joint experimental and theoretical study of 3,5-dimethyl-1H-pyrazole-1-carboxamidine (L) as well as its complexes CoL2(H2O)2(NO3)2 and NiL2(H2O)2(NO3)2 is reported. On the basis of FT-IR experiments and a DFT-derived scaled quantum mechanical force field the normal coordinate analysis of L was carried out. The FT-IR spectra of the two complexes were interpreted using the present assignment of L and computed vibrational data of the complexes. The ionic and charge transfer interactions in the complexes were assessed by means of natural bond orbital (NBO) analysis. 相似文献
8.
The oxidation of alcohols, methoxymethyl ethers, acetals and ketals to their corresponding carbonyl compounds with Fe(NO3)3.9H2O is efficiently promoted in the presence of NaHSO4.H2O. All reactions were performed in the absence of solvent in good to high yields. Availability, stability and non-toxicity of the reagents, mild reaction conditions, absence of solvent, relatively short reaction times, good to high yields of the products, and easy work-up are advantages of the proposed method. 相似文献
9.
10.
Here we report negative electron affinities of NO(2)(-).(H2O)n clusters (n=0-30) obtained from density functional theory calculations and a simple correction to Koopmans' theorem. The method relies on the calculation of the detachment energy of the monoanion and its highest occupied molecular orbital and lowest unoccupied molecular orbital energies, and explicit calculations on the dianion itself are avoided. A good agreement with resonances in the cross section for neutral production in electron scattering experiments is found for n=0, 1, and 2. We find several isomeric structures of NO(2)(-).(H2O)2 of similar energy that elucidate the interplay between water-water and ion-water interactions. The topology is predicted to influence the electron affinity by 0.5 and 0.4 eV for NO(2)(-).(H2O) and NO(2)(-).(H2O)2, respectively. The electron affinity of larger clusters is shown to follow a (n+delta)-1/3 dependence, where delta=3 represents the number of water molecules that in volume, could replace NO(2) (-). 相似文献
11.
The short-time nuclear dynamics of Cu(H(2)O) is investigated using femtosecond photodetachment-photoionization spectroscopy and time-dependent quantum wave packet calculations. The Cu(H(2)O) dynamics is initiated in the electronic ground state of the complex by electron photodetachment from the Cu(-)(H(2)O) complex, where hydrogen atoms are oriented toward Cu. Several time-resolved resonant multiphoton ionization schemes are used to probe the ensuing reorientation and dissociation. Immediately following photodetachment, the neutral complex is far from its minimum energy geometry and possesses an internal energy comparable to the Cu-H(2)O dissociation energy and undergoes both large-amplitude H(2)O motion and dissociation. Dissociation is observed to occur on three distinct time scales: 0.6, 8, and 100 ps. These results are compared to the results of time-dependent J=0 wave packet calculations, propagating the initial anion vibrational wave functions on the ground-state potential of the neutral complex. An excellent agreement is obtained between the experimental results and the ionization signals derived from the calculated probability amplitudes. Related experiments and calculations are carried out on the Cu(D(2)O) complex, with results very similar to those of Cu(H(2)O). 相似文献
12.
The thermal decomposition of trifluoromethoxycarbonyl peroxy nitrate, CF3OC(O)O2NO2, has been studied between 278 and 306 K at 270 mbar total pressure using He as a diluent gas. The pressure dependence of the reaction was also studied at 292 K between 1.2 and 270 mbar total pressure. The rate constant reaches its high‐pressure limit at 70 mbar. The first step of the decomposition leads to CF3OC(O)O2 and NO2 formation, that is, CF3OC(O)O2NO2 + M ? CF3OC(O)O2 + NO2 + M (k1, k?1). Reaction (?1) was prevented by adding an excess of NO that reacts with the peroxy radical intermediate and leads to carbonyl fluoride (CF2O), carbon dioxide (CO2), nitrogen dioxide (NO2), and small quantities of CF3OC(O)O2C(O)OCF3. The kinetics of reaction (1) was determined by following the loss of CF3OC(O)O2NO2 via IR spectroscopy. The temperature dependence of the decomposition follows the equation k1(T) = 1.0 × 1016 e?((111±3)/(RT)) for the exponential term expressed in kJ mol?1. The values obtained for the kinetic parameters such as k1 at 298 K, the activation energy (Ea), and the preexponential factor (A) are compared with literature data for other acyl peroxy nitrates. The atmospheric thermal stability of CF3OC(O)O2NO2 and its dependence with altitude is discussed. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 831–838, 2008 相似文献
13.
Marek J. Wjcik Gilbert J. Mains J. Paul Devlin 《International journal of quantum chemistry》1995,53(1):49-56
The geometries, successive binding energies, vibrational frequencies, and infrared intensities are calculated for the [Li(H2O)n]+ and [K(H2O)n]+ (n = 1?4) complexes. The basis sets used are 6-31G* and LANL 1DZ (Los Alamos ECP +DZ ) at the SCF and MP 2 levels. There is an agreement for calculated structures and frequencies between the MP 2/6-31G* and MP 2/LANL 1DZ basis sets, which indicates that the latter can be used for calculations of water complexes with heavier ions. Our results are in a reasonable agreement with available experimental data and facilitate experimental study of these complexes. © 1995 John Wiley & Sons, Inc. 相似文献
14.
15.
16.
Barakat AS Gaballa AS Mohammed SF Teleb SM 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2005,62(4-5):814-818
The infrared spectra of the oxodiperoxo and triperoxo complexes, (NH4)[VO(O2)2(phen)].2H2O and (NH4)[V(O2)3(phen)].2H2O have been recorded and the observed bands are assigned on the basis of Cs symmetry. Thermogravimetric (TG) and differential thermal analysis (DTA) measurements on these two complexes were also carried out. A detailed mechanism for the mode of thermal decomposition of the two complexes has been given and supported by infrared spectral measurements on the thermal decomposition products. The data obtained agree quite well with the expected structure and indicate that the final thermal decomposition product of these two complexes is V2O5. 相似文献
17.
An ab initio investigation of the potential energy surfaces and vibrational energies and wave functions of the anion, neutral, and cation Cu(H(2)O) complexes is presented. The equilibrium geometries and harmonic frequencies of the three charge states of Cu(H(2)O) are calculated at the MP2 level of theory. CCSD(T) calculations predict a vertical electron detachment energy for the anion complex of 1.65 eV and a vertical ionization potential for the neutral complex of 6.27 eV. Potential energy surfaces are calculated for the three charge states of the copper-water complexes. These potential energy surfaces are used in variational calculations of the vibrational wave functions and energies and from these, the dissociation energies D(0) of the anion, neutral, and cation charge states of Cu(H(2)O) are predicted to be 0.39, 0.16, and 1.74 eV, respectively. In addition, the vertical excitation energies, that correspond to the 4 (2)P<--4 (2)S transition of the copper atom, and ionization potentials of the neutral Cu(H(2)O) are calculated over a range of Cu(H(2)O) configurations. In hydrogen-bonded, Cu-HOH configurations, the vertical excitation and ionization energies are blueshifted with respect to the corresponding values for atomic copper, and in Cu-OH(2) configurations where the copper atom is located near the oxygen end of water, both quantities are redshifted. 相似文献
18.
R. M. Lobkovskaya R. P. Shibaeva E. É. Laukhina A. V. Zvarykina 《Journal of Structural Chemistry》1991,31(5):687-691
Institute of Chemical Physics, Academy of Sciences of the USSR. Translated from Zhurnal Strukturnoi Khimii, Vol. 31, No. 5, pp. 3–7, September–October, 1990. 相似文献
19.
The performance of B-LYP, B-P86, B3-LYP, B3-P86, and B3-PW91 density functionals to describe multiple hydrogen bond systems was studied. For this purpose we have chosen the dimers of hydrogen peroxide and the hydrogen peroxide–water complexes. The geometries and vibrational frequencies obtained with a 6-311+G(d,p) basis set were compared with those obtained at the MP2 level using the same basis set expansion. The corresponding dimerization energies were obtained using a 6-311+G(3df,2p) basis set and compared with those obtained using the G2(MP2) theory. Red shiftings of the OH donor stretching frequencies were predicted by all approaches investigated; however, in all cases, the DFT values were sizably larger than the MP2 ones. Similarly, the blue shifting of the torsion of the hydrogen peroxide subunit was larger when evaluated at the DFT level. All functionals reproduced the G2(MP2) relative stabilities of the different local minima quite well. With the exception of the B-LYP and B3-PW91 approaches, all functionals yielded binding energies which deviated from the G2(MP2) values by less than 0.5 kcal/mol, provided that G2-type basis sets were used and that the corresponding BSSE corrections were included. © 1997 John Wiley & Sons, Inc. J Comput Chem 18: 1124–1135 相似文献
20.
Carme Rovira Pere Constans M.-H. Whangbo Juan J. Novoa 《International journal of quantum chemistry》1994,52(1):177-189
Using the Hartree–Fock and MP 2 methods with bases of up to 6-31++G (2d, 2p) quality, the optimum geometry of the 1:2 and 2:1 (H2O)n… (HF)m complexes of water and hydrogen fluoride is searched in a systematic way. Two minimum-energy conformations are found for the 1:2 complex connected through a low-energy transition state. For the 2:1 complex, only one minimum-energy structure is obtained. The analysis of the geometries of the minima and their vibrational frequencies shows that none of them can be used to explain the existence of the H …F? H reverse complex detected experimentally. © 1994 John Wiley & Sons, Inc. 相似文献