首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
单相Ce0.5Zr0.5O2立方固溶体的高压高温合成   总被引:1,自引:0,他引:1  
以化学沉淀法制备的 Ce O2 和 Zr O2 纳米微粒为前驱体 ,首次在高压高温 (3 .1 GPa,1 0 73 K)下合成了单相 Ce0 .5Zr0 .5O2 面心立方固溶体 .使用 X射线衍射、TG-DTA、XPS、Raman、电子自旋共振谱和交流阻抗谱等对样品的结构、Ce离子的价态和导电性进行了表征 .实验结果表明 ,纳米 Ce O2 -50 % Zr O2 混合物在高压 (0 .9GPa以上 )高温 (1 0 73 K以上 )条件下可以发生固态反应 ,高压下固溶温度明显降低 .Ce0 .5Zr0 .5O2 面心立方固溶体在 773 K以下是热稳定的 ,不发生结构转变 ,固溶体中 Ce离子完全以 Ce4 + 形式存在 ,773 K退火也不引起 Ce4 + 向 Ce3 + 转变 ,晶格中氧缺位非常少 .Ce0 .5Zr0 .5O2 面心立方固溶体是离子导电 ,82 3 K时电导率 σ=1 .2× 1 0 -5S/cm,与纯 Ce O2 在同温度下的电导率同数量级 ;1 1 2 3 K时 σ=2 .1× 1 0 -3 S/cm,小于掺入稀土或碱土氧化物的氧化锆和氧化铈基电解质的电导率 .在高温区和低温区 ln(σT)与 1 /T的关系满足斜率不同的二条直线 ,低温活化能小于高温活化能 .固溶体的显微硬度 (50 g载荷 )为 572 HV.  相似文献   

2.
Ce(x)Zr(1)(-)(x)O(2) solid solutions deposited over silica surface were investigated by X-ray diffraction (XRD), Raman spectroscopy (RS), and high-resolution transmission electron microscopy (HREM) techniques in order to understand the role of silica support and the temperature stability of these composite oxides. For the purpose of comparison, an unsupported Ce(x)Zr(1)(-)(x)O(2) was also synthesized and subjected to characterization by various techniques. The Ce(x)Zr(1)(-)(x)O(2)/SiO(2) (CZ/S) (1:1:2 mole ratio based on oxides) was synthesized by depositing Ce(x)Zr(1)(-)(x)O(2) solid solution over a colloidal SiO(2) support by a deposition precipitation method and unsupported Ce(x)Zr(1)(-)(x)O(2) (CZ) (1:1 mole ratio based on oxides) was prepared by a coprecipitation procedure, and the obtained catalysts were subjected to thermal treatments from 773 to 1073 K. The XRD measurements disclose the presence of cubic phases with the composition Ce(0.75)Zr(0.25)O(2) and Ce(0.6)Zr(0.4)O(2) in CZ samples, while CZ/S samples possess Ce(0.75)Zr(0.25)O(2), Ce(0.6)Zr(0.4)O(2), and Ce(0.5)Zr(0.5)O(2) in different proportions. The crystallinity of these phases increased with increasing calcination temperature. The cell a parameter estimations indicate contraction of ceria lattice due to the incorporation of zirconium cations into the CeO(2) unit cell. Raman measurements indicate the presence of oxygen vacancies, lattice defects, and displacement of oxygen ions from their normal lattice positions in both the series of samples. The HREM results reveal, in the case of CZ/S samples, a well-dispersed nanosized Ce-Zr-oxides over the surface of amorphous SiO(2). The structural features of these crystals as determined by digital diffraction analysis of experimental images reveal that the Ce-Zr-oxides are mainly in the cubic geometry and exhibit high thermal stability. Oxygen storage capacity measurements by a thermogravimetric method reveal a substantial enhancement in the oxygen vacancy concentration of CZ/S sample over the unsupported CZ sample.  相似文献   

3.
Fluorite-type Ce0.5Zr0.5O2 and Ce0.5Hf0.5O2 have been synthesized by a solution combustion route, and their oxygen release and reduction have been investigated up to 850 degrees C. On reduction, the zirconium system forms two pyrochlore phases, Ce2Zr2O7 (pyrochlore-I) and Ce2Zr2O6.2 (pyrochlore-II), while the hafnium system forms only a disordered fluorite phase with the composition Ce0.5Hf0.5O1.77, under the same experimental conditions. The crystal structures of the reduction products have been characterized by powder X-ray diffraction and Rietveld refinement, and their electronic structures have been investigated by photoelectron spectroscopy and electrical conductivity measurements. Pyrochlore-I (a = 10.6727(4) A) is a semiconductor, while pyrochlore-II (a = 10.6463(8) A) is a good conductor (with a nearly temperature independent resistivity of approximately 2.5 ohm.cm in the 400-1000 K range). X-ray photoelectron spectroscopy (XPS) shows an admixture of Ce(5d,6s) with Zr(4d) and O(2p) and a significant density of states near EF in the highly reduced pyrochlore-II phase. The changes have been rationalized in terms of a qualitative energy band scheme that brings out the special role of zirconium vis-à-vis hafnium in the reduction/oxygen release properties of Ce0.5Zr0.5O2 and Ce0.5Hf0.5O2.  相似文献   

4.
Ce-Zr-O固溶体的制备和表征   总被引:1,自引:3,他引:1  
采用硝酸盐直接分解法、共沉淀法、苹果酸溶胶 凝胶法和柠檬酸溶胶 凝胶法制备了Ce Zr O复合氧化物并进行了表征。溶胶 凝胶法制得的Ce Zr O为立方的Ce0 .5Zr0 .5O2 复合氧化物 (其中少量具有立方性质的t″相 ) ,而直接分解和共沉淀法制得的是由立方Ce0 .8Zr0 .2 O2 和四方Ce0 .2 Zr0 .8O2 固溶体组成的复合氧化物。不同制备方法制得的样品由于物相组成不同 ,还原性能也有较大差别。差热分析和X射线衍射分析结果表明 ,凝胶在燃烧的同时生成了Ce0 .5Zr0 .5O2 固溶体。  相似文献   

5.
The thermal stability of a nanosized Ce(x)Zr(1-x)O2 solid solution on a silica surface and the dispersion behavior of V2O5 over Ce(x)Zr(1-x)O2/SiO2 have been investigated using XRD, Raman spectroscopy, XPS, HREM, and BET surface area techniques. Oxidative dehydrogenation of ethylbenzene to styrene was performed as a test reaction to assess the usefulness of the VOx/Ce(x)Zr(1-x)O2/SiO2 catalyst. Ce(x)Zr(1-x)O2/SiO2 (1:1:2 mol ratio based on oxides) was synthesized through a soft-chemical route from ultrahigh dilute solutions by adopting a deposition coprecipitation technique. A theoretical monolayer equivalent to 10 wt % V2O5 was impregnated over the calcined Ce(x)Zr(1-x)O2/SiO2 sample (773 K) by an aqueous wet impregnation technique. The prepared V2O5/Ce(x)Zr(1-x)O2/SiO2 sample was subjected to thermal treatments from 773 to 1073 K. The XRD measurements indicate the presence of cubic Ce0.75Zr0.25O2 in the case of Ce(x)Zr(1-x)O2/SiO2, while cubic Ce0.5Zr0.5O2 and tetragonal Ce0.16Zr0.84O2 in the case of V2O5/Ce(x)Zr(1-x)O2/SiO2 when calcined at various temperatures. Dispersed vanadium oxide induces more incorporation of zirconium into the ceria lattice, thereby decreasing its lattice size and also accelerating the crystallization of Ce-Zr-O solid solutions at higher calcination temperatures. Further, it interacts selectively with the ceria portion of the composite oxide to form CeVO4. The RS measurements provide good evidence about the dispersed form of vanadium oxide and the CeVO4 compound. The HREM studies show the presence of small Ce-Zr-oxide particles of approximately 5 nm size over the surface of amorphous silica and corroborate with the results obtained from other techniques. The catalytic activity studies reveal the ability of vanadium oxide supported on Ce(x)Zr(1-x)O2/SiO2 to efficiently catalyze the ODH of ethylbenzene at normal atmospheric pressure. The remarkable ability of Ce(x)Zr(1-x)O2 to prevent the deactivation of supported vanadium oxide leading to stable activity in the time-on-stream experiments and high selectivity to styrene are other important observations.  相似文献   

6.
Tetragonal ZrO(2)-CeO(2) solid solutions with composition Zr(1-x)Ce(x)O(2) (x = 0.1, 0.2, and 0.3) were synthesized in a citrate complexation route and characterized by XRD, XPS, UV-vis diffuse reflectance and ESR measurements. The formation of the homogeneous solid solution Zr(1-x)Ce(x)O(2) constructed the oxo-bridged bimetallic Zr(IV)-O-Ce(III) linkage between two neighboring flattened tetrahedrons of the structural framework. As compared to their parent oxides, the ZrO(2)-CeO(2) solid solutions exhibited optical absorption extending to longer wavelengths in the visible region. The red shift in the absorption spectrum was demonstrated to be partially due to a metal-to-metal charge transfer (MMCT) transition of the oxo-bridged Zr(IV)-O-Ce(III) linkage. The visible-light induced MMCT transition of Zr(IV)-O-Ce(III)→ Zr(III)-O-Ce(IV) resulted in the generation of the additional Ce(IV) and superoxide anion radical formed by the interaction of Zr(III) with adsorbed O(2). Catalytic activity evaluation revealed that the photoexcitation of the MMCT over the solid solution can initiate the degradation of RhB and 2,4-DCP upon visible-light irradiation, whereby Zr(III) and Ce(IV) act as a site-specific reducing and oxidizing center, respectively. The structure of the solid solution Zr(1-x)Ce(x)O(2) and the oxidation states of Zr and Ce species are also discussed in detail.  相似文献   

7.
利用X射线衍射(XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)和交流阻抗谱对溶胶-凝胶法制备的稀土双掺杂固溶体Ce0.8Cd0.2-xPrxO1.9(x=0,0.02,0.10)的结构和导电性进行了研究.XRD结果表明,经800℃焙烧所得样品都形成了单相立方萤石结构,平均晶粒尺寸在23~30 nm之间;X...  相似文献   

8.
Structural characteristics of CeO(2)-ZrO(2)/TiO(2) (CZ/T) and V(2)O(5)/CeO(2)-ZrO(2)/TiO(2) (V/CZ/T) mixed oxide catalysts have been investigated using X-ray diffraction (XRD), BET surface area, Raman spectroscopy (RS), and high-resolution transmission electron microscopy (HREM) techniques. The CeO(2)-ZrO(2) (1:1 mole ratio) solid solution was deposited over a finely powdered TiO(2) support by a deposition precipitation method. A nominal 5 wt % V(2)O(5) was impregnated over the calcined (773 K) CZ/T mixed oxide carrier by a wet impregnation technique. The obtained CZ/T and V/CZ/T samples were further subjected to thermal treatments from 773 to 1073 K to understand the dispersion and temperature stability of these materials. In the case of CZ/T samples, the XRD results suggest the formation of different cubic and tetragonal Ce-Zr-oxide phases, Ce(0.75)Zr(0.25)O(2), Ce(0.6)Zr(0.4)O(2), Ce(0.5)Zr(0.5)O(2), and Ce(0.16)Zr(0.84)O(2) in varying proportions depending on the treatment temperature. With increasing calcination temperature from 773 to 1073 K, the intensity of the lines pertaining to cubic Ce(0.6)Zr(0.4)O(2) and Ce(0.5)Zr(0.5)O(2) phases increased at the expense of cubic Ce(0.75)Zr(0.25)O(2), indicating more incorporation of zirconia into the ceria lattice. The TiO(2) was mainly in the anatase form whose crystallite size also increased with increasing treatment temperature. A better crystallization and more incorporation of zirconia into the ceria lattice was noted when CZ/T was impregnated with V(2)O(5). However, no crystalline V(2)O(5) could be seen from both XRD and RS measurements. In particular, a preferential formation of CeVO(4) compound and an intense tetragonal Ce(0.16)Zr(0.84)O(2) phase were noted beyond 873 K. The HREM results indicate, in the case of CZ/T samples, a well-dispersed Ce-Zr-oxide of the size approximately 5 nm over the bigger crystals ( approximately 40 nm) of TiO(2) when treated at 873 K. The exact structural features of these crystals as determined by digital diffraction analysis of experimental images reveal that the Ce-Zr-oxides are mainly in the cubic fluorite geometry and the TiO(2) is in anatase form. A better crystallization of Ce-Zr-oxides ( approximately 8 nm) over the surface of bigger crystals of TiO(2) was noted at 1073 K. A further enhancement in the crystallite size and zirconia-rich tetragonal phase was noted in the case of V/CZ/T samples. Further, the structure of CeVO(4) formed was also clearly identified in conformity with XRD and RS results.  相似文献   

9.
The transition metals (Cu, Co, and Fe) were applied to modify Ni/Ce0.2Zr0.1Al0.7Oδ catalyst.The effects of transition metals on the catalytic properties of Ni/Ce0.2Zr0.1Al0.7Oδ autothermal reforming of methane were investigated. The Ni-supported catalysts were characterized by XRD, TPR and XPS.Tests in autothermal reforming of methane to hydrogen showed that the addition of transition metals (Cu and Co) significantly increased the activity of catalyst under the conditions of lower reaction temperature,and Ni/Cu0.05Ce0.2Zr0.1Al0.65Oδ was found to have the highest conversion of CH4 among all catalysts in the operation temperatures ranging from 923 K to 1023 K. TPR, XRD and XPS measurements indicated that the cubic phases of CexZr1-xO2 solid solution were formed in the preparation process of catalysts.Strong interaction was found to exist between NiO and CexZr1-xO2 solid solution. The addition of Cu improved the dispersion of NiO, inhibited the formation of NiAl2O4, and thus significantly promoted the activity of the catalyst Ni/Cu0.05Ce0.2Zr0.1Al0.65Oδ.  相似文献   

10.
Structural characteristics of nanosized ceria-silica, ceria-titania, and ceria-zirconia mixed oxide catalysts have been investigated using X-ray diffraction (XRD), Raman spectroscopy, BET surface area, thermogravimetry, and high-resolution transmission electron microscopy (HREM). The effect of support oxides on the crystal modification of ceria cubic lattice was mainly focused. The investigated oxides were obtained by soft chemical routes with ultrahighly dilute solutions and were subjected to thermal treatments from 773 to 1073 K. The XRD results suggest that the CeO(2)-SiO(2) sample primarily consists of nanocrystalline CeO(2) on the amorphous SiO(2) surface. Both crystalline CeO(2) and TiO(2) anatase phases were noted in the case of CeO(2)-TiO(2) sample. Formation of cubic Ce(0.75)Zr(0.25)O(2) and Ce(0.6)Zr(0.4)O(2) (at 1073 K) were observed in the case of the CeO(2)-ZrO(2) sample. Raman measurements disclose the fluorite structure of ceria and the presence of oxygen vacancies/Ce(3+). The HREM results reveal well-dispersed CeO(2) nanocrystals over the amorphous SiO(2) matrix in the cases of CeO(2)-SiO(2), isolated CeO(2), and TiO(2) (anatase) nanocrystals, some overlapping regions in the case of CeO(2)-TiO(2), and nanosized CeO(2) and Ce-Zr oxides in the case of CeO(2)-ZrO(2) sample. The exact structural features of these crystals as determined by digital diffraction analysis of HREM experimental images reveal that the CeO(2) is mainly in cubic fluorite geometry. The oxygen storage capacity (OSC) as determined by thermogravimetry reveals that the OSC of the mixed oxide systems is more than that of pure CeO(2) and is system dependent.  相似文献   

11.
The effect of simultaneous substitutions of Ca at A site and Nb or Ta at B site in pyrochlore-type solid solutions: (Ca(x)Gd(1-x))(2)(Zr(1-x)M(x))(2)O(7) (x = 0.1, 0.2, 0.3, 0.4, 0.5 and M = Nb or Ta) were studied by powder X-ray diffraction (XRD), FT NIR Raman spectroscopic techniques and transmission electron microscopy. The solid solutions were prepared by the conventional high-temperature ceramic route. The XRD results and Rietveld analysis revealed that the defect fluorite structure of Gd(2)Zr(2)O(7) progressively changed to a more ordered pyrochlore phase by simultaneous substitutions at A and B sites. Raman spectroscopy reveals the progressive ordering in the anion sublattice with simultaneous doping. High-resolution images and selected-area electron diffraction patterns obtained from TEM confirms the XRD and Raman spectroscopic results. High-temperature XRD studies show that the lattice expansion coefficient in these pyrochlore oxides is of the order of 10(-6) K(-1). Lattice thermal expansion coefficient increases with increase of disorder in pyrochlore oxides, and hence the variation of thermal expansion coefficient with composition is also a good indicator of disordering in pyrochlore-type oxides. The ionic conducting properties of the samples were characterised by impedance spectroscopy, and it was found that Nb-doped compositions show a considerable change in conductivity near the phase boundary of disordered pyrochlore and defect fluorite phases.  相似文献   

12.
The increasingly restrictive regulations on car exhaust emissions will necessitate the development of a new generation of three way catalysts (TWC) with better performance1. Ceria (CeO2) is the main component of the current TWC: its key role is to compensate the fluctuations in the exhaust stream composition, therefore, allowing to expand the air/fuel(A/F) operating window of catalytic converters2. This property is related to its oxygen storage capacity (OSC), associated to the redox couple Ce4+/Ce3+. However, CeO2 alone is easy to sinter to lost OSC at high temperature3.Ceria-zirconia (CexZr1-xO2) solid solutions by incorporation of Zr4+ in the CeO2 lattice have enhanced OSC and greater thermal stability, which are becoming the key materials for the new generation of TWC4. OSC of ceria-zirconia solid solutions can be further improved by the addition of M3+ dopants5. Besides Ce, other rare-earth elements such as Pr and Tb can vary their oxidation state. Pr and Tb are particularly suitable for making solid solutions with cerium because the known structure of PrO2 and TbO2 is of the cubic fluorite type, and the ionic radii of Pr4+ and Tb4+ are close to that of Ce4+6.In this paper, Ce0.6Zr0.3M0.1O2 (M=Y, La, Pr, Tb) were prepared by co-precipitation technique and characterized by a series of methods. Meanwhile, palladium-only TWCs were prepared by slurry coating and their catalytic activity was evaluated under the condition of simulated exhaust in the lab.XRD and FT-Raman spectra results show Ce0.6Zr0.3M0.1O2 have cubic fluorite structure which keep unchanging at high temperature. The different dopant ion radii brought different effect on the cell parameter of Ce0.6Zr0.3M0.1O2. The X-ray photoelectron spectroscopy (XPS) results show that the binding energy of Ce3d, Zr3d and O1s for Ce0.6Zr0.3M0.1O2 rose compared with that for Ce0.6Zr0.4O2, indicating dopant elements changed chemistry environment of solid solutions which was available to improve redox performance From TPR results, doping La can not change redox performance of solid solution, but doping Y decreased reduction temperature. Doping Pr and Tb notably improved redox performance of solid solutions due to appearance of low-temperature reduction peak in TPR profile which come from mobility of bulk oxygen.Compared with Pd/Ce0.6Zr0.4O2, doping Y and La unchanged A/F characteristic of TWCs, but doping Pr and Tb widen A/ F operating window and make HC, CO and NO have higher conversion.The light-off temperature of Pd/Ce0.6Zr0.3La0.1O2 was corresponded to that of Pd/Ce0.6Zr0.4O2.However, the light-off temperatures of Pd/Ce0.6Zr0.3M0.1O2 (M=Y, Pr, Tb) were lower than that of Pd/Ce0.6Zr0.4O2, which kept much lower after high temperature treatments. Among Pd/Ce0.6Zr0.3M0.1O2 (M=Y, La, Pr, Tb), Pd/Ce0.6Zr0.3Tb0.1O2 showed wider A/F operating window,higher conversion, lower light-off temperature and better high-temperature resistance  相似文献   

13.
纳米晶固溶体Ce0.8Nd0.2O2-δ的合成与表征   总被引:6,自引:0,他引:6  
利用溶胶 -凝胶法合成纳米晶固溶体 Ce0 .8Nd0 .2 O2 -δ.XRD测试表明 ,胶体经 2 0 0℃烧结处理就可以得到晶粒尺寸为 7.2 nm的纳米晶 ,随烧结温度的升高 ,晶粒尺寸增大 .EPR测试给出固溶体 Ce0 .8Nd0 .2 O2 -δ存在少量的 Ce3 +离子 .在纳米晶固溶体 Ce0 .8Nd0 .2 O2 -δ的 Raman光谱上观察到两个峰 ,低频的强峰为特征F2 g振动谱带 ,高频谱带的出现与样品中存在氧缺位有关 .固溶体晶粒尺寸的减小不但使 F2 g振动谱带红移 ,而且谱带明显宽化 .复阻抗谱的测量表明 ,固溶体 Ce0 .8Nd0 .2 O2 -δ具有氧离子导电特性 .4 0 0和 50 0℃时的电导率分别为 4 .55× 1 0 -4 和 2 .65× 1 0 -3 S· cm-1,活化能为 0 .82 e V  相似文献   

14.
用水热法制备了不同摩尔比的系列Ce1-xFexO2复合氧化物碳烟燃烧催化剂. 采用X射线粉末衍射(XRD)、比表面积(BET)、拉曼光谱(Raman)、H2程序升温还原(H2-TPR)及程序升温氧化反应(TPO)等技术考察了Fe含量对催化剂结构和性能的影响, 重点探讨了催化剂表面性质和体相结构与催化活性和稳定性之间的关系. 结果表明, Fe3+较难进入CeO2晶格中, 部分Fe2O3分散在CeO2表面. 铈铁固溶体(氧空位)有利于氧的吸附活化, 而表面氧化铁对提高催化剂的抗老化能力起着重要作用. Ce0.8Fe0.2O2有最高的Fe3+掺杂量, 有良好分散性的表面Fe2O3, 显示出最好的催化活性和稳定性, 催化碳烟的起燃温度(Ti)和生成CO2的峰值温度(Tp)分别为262和314 ℃. Ce0.8Fe0.2O2高温老化后的Ti和Tp仍较低, 分别为292和392 ℃.  相似文献   

15.
何玉梅  刘冰  李金林 《分子催化》2021,35(6):561-570
将不同比例的铈锆前驱体负载到ZIF-67,氮气气氛焙烧制备CexZr1-xO2/Co/C-N催化剂,对催化剂进行了XRD,H2-TPR、XPS表征,并在固定床反应器评价其CO2加氢制甲醇性能。XRD结果表明,在铈中加入适量锆形成铈锆固溶体,铈锆固溶体与钴物种较强的相互作用力可以阻止表明金属Co的氧化。但过量加入的锆又会削弱这一作用力,部分金属Co被氧化为Co3O4。H2-TPR结果表明适量的锆的加入改善催化剂的还原性能,催化剂还原温度降低。XPS证实了25%Ce0.67Zr0.33O2/Co/C-N催化剂中含有更多的氧空穴及氮含量,氧空穴和碱性氮都有利于CO2的解离吸附。优化后的25%Ce0.67Zr0.33O2/Co/C-N 催化剂在225 oC,2 MPa,GHSV = 6 L/gcat/h反应条件下取得最高甲醇时空收率,为3.0 mmol/gcat/h。  相似文献   

16.
铈锆氧化物固溶体对全钯三效催化剂性能的影响   总被引:23,自引:0,他引:23  
铈锆氧化物固溶体对全钯三效催化剂性能的影响  相似文献   

17.
以CexZr1-xO2固溶体做载体, 制备了系列Pt/γ-Al2O3/CexZr1-xO2催化剂(x=1, 0.75, 0.5, 0.25, 0). 应用Brunauer-Emmet-Teller (BET)比表面积分析、X射线衍射(XRD)和H2程序升温还原(H2-TPR)等手段对催化剂进行相关表征, 并系统研究了催化剂在饮食油烟催化燃烧中的催化活性. BET结果表明催化剂的比表面积随Ce/Zr摩尔比的减小而减小. XRD结果表明贵金属Pt很好地分散在氧化铝和CexZr1-xO2固溶体上. H2-TPR结果发现催化剂Pt/γ-Al2O3/Ce0.5Zr0.5O2的还原峰面积最大且氧离子的流动性最好. 催化活性研究结果表明Pt负载在CexZr1-xO2固溶体上有利于油烟的催化燃烧, 降低了反应温度. 随着CexZr1-xO2固溶体中Ce/Zr摩尔比的变化, 催化剂的活性顺序为Pt/γ-Al2O3/Ce0.5Zr0.5O2>Pt/γ-Al2O3/Ce0.25Zr0.75O2>Pt/γ-Al2O3/Ce0.75Zr0.25O2>Pt/γ-Al2O3/CeO2>Pt/γ-Al2O3/ZrO2.  相似文献   

18.
利用共沉淀法制备了具有介孔结构的Ce0.5Zr0.5O2固溶体载体,然后浸渍不同质量分数(10%、20%、30%)的活性组分钴,制备了系列Co/Ce0.5Zr0.5O2催化剂。利用N2物理吸附(BET)、X射线粉末衍射(XRD)、H2-程序升温还原(H2-TPR)、扫描电子显微镜(SEM) 、透射电子显微镜(TEM) 、 程序升温氧化(TPO)和热重(TG)等手段对制备和反应后的催化剂进行了表征,研究了它们对甲烷部分氧化制合成气反应的催化性能。研究结果表明,铈锆固溶体负载的钴比较容易被还原,该系列催化剂具有较高的活性和对H2及CO的选择性,且随Co含量的增加,催化剂的活性和对H2和CO的选择性得到提高的同时,也增强了催化剂的抗积炭性能。  相似文献   

19.
以CexZr1-xO2固溶体做载体,制备了系列Pt/γ-Al2O3/CexZr1-xO2催化剂(x=1,0.75,0.5,0.25,0).应用Brunauer-Emmet-Teller(BET)比表面积分析、X射线衍射(XRD)和H2程序升温还原(H2-TPR)等手段对催化剂进行相关表征,并系统研究了催化剂在饮食油烟催化燃烧中的催化活性.BET结果表叫催化剂的比表面积随Ce/Zr摩尔比的减小而减小.XRD结果表明贵金属Pt很好地分散在氧化铝和CexZr1-xO2固溶体上.H2-TPR结果发现催化剂Pt/γ-Al2O3/Ce0.5Zr0.5O2的还原峰面积最大且氧离子的流动性最好.催化活性研究结果表明Pt负载在CexZr1-xO2固溶体上有利于油烟的催化燃烧,降低了反应温度.随着CexZr1-xO2固溶体中Ce/Zr摩尔比的变化,催化剂的活性顺序为Pt/γ-Al2O3/Ce0.5Zr0.5O2>Pt/γ-Al2O3/Ce0.25Zr0.75O2>Pt/γ-Al2O3/Ce0.75Zr0.25O2>Pt/γ-Al2O3/CeO2>Pt/γ-Al2O3/ZrO2.  相似文献   

20.
采用共沉淀法制备了系列Ce0.5+xZr0.4-xLa0.1O2-Al2O3催化剂, 其中0≤x≤0.4且Ce0.5+xZr0.4-xLa0.1O2与Al2O3的质量比为1:1. 考察了该系列催化剂对柴油车排放碳烟的催化燃烧性能, 并用低温N2吸附-脱附、X射线衍射(XRD)、X射线光电子能谱(XPS)、氢气程序升温还原(H2-TPR)和氧气程序升温脱附(O2-TPD)等手段对催化剂进行了表征. 研究结果表明该系列催化剂均形成了具有立方萤石结构的固溶体. 当x=0.2时, Ce3+离子在催化剂表面有一定的富集, 此时催化剂具有最大的β氧脱附峰和最好的表面还原性能, 同时具有良好的催化碳烟氧化活性, 碳烟在该催化剂的起燃温度为360 °C, 具有较好的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号