首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
References 1–4 develop second-order sufficient conditions for local minima of optimal control problems with state and control constraints. These second-order conditions tighten the gap between necessary and sufficient conditions by evaluating a positive-definiteness criterion on the tangent space of the active constraints. The purpose of this paper is twofold. First, we extend the methods in Refs. 3, 4 and include general boundary conditions. Then, we relate the approach to the two-norm approach developed in Ref. 5. A direct sufficiency criterion is based on a quadratic function that satisfies a Hamilton-Jacobi inequality. A specific form of such a function is obtained by applying the second-order sufficient conditions to a parametric optimization problem. The resulting second-order positive-definiteness conditions can be verified by solving Riccati equations.The authors wish to thank K. Malanowski for helpful discussions.  相似文献   

2.
In this work linear-quadratic optimal control problems for parabolic equations with mixed control-state constraints are considered. These problems arise when a Lavrentiev regularization is utilized for state constrained linear-quadratic optimal control problems. For the numerical solution a Galerkin discretization is applied utilizing proper orthogonal decomposition (POD). Based on a perturbation method it is determined how far the suboptimal control, computed on the basis of the POD method, is from the (unknown) exact one. Numerical examples illustrate the theoretical results. In particular, the POD Galerkin scheme is applied to a problem with state constraints.  相似文献   

3.
《Optimization》2012,61(6):833-849
A family of linear-quadratic optimal control problems with pointwise mixed state-control constraints governed by linear elliptic partial differential equations is considered. All data depend on a vector parameter of perturbations. Lipschitz stability with respect to perturbations of the optimal control, the state and adjoint variables, and the Lagrange multipliers is established.  相似文献   

4.
A class of nonlinear elliptic optimal control problems with mixed control-state constraints arising, e.g., in Lavrentiev-type regularized state constrained optimal control is considered. Based on its first order necessary optimality conditions, a semismooth Newton method is proposed and its fast local convergence in function space as well as a mesh-independence principle for appropriate discretizations are proved. The paper ends by a numerical verification of the theoretical results including a study of the algorithm in the case of vanishing Lavrentiev-parameter. The latter process is realized numerically by a combination of a nested iteration concept and an extrapolation technique for the state with respect to the Lavrentiev-parameter.  相似文献   

5.
In this paper we report new results on the regularity of optimal controls for dynamic optimization problems with functional inequality state constraints, a convex time-dependent control constraint and a coercive cost function. Recently, it has been shown that the linear independence condition on active state constraints, present in the earlier literature, can be replaced by a less restrictive, positive linear independence condition, that requires linear independence merely with respect to non-negative weighting parameters, provided the control constraint set is independent of the time variable. We show that, if the control constraint set, regarded as a time-dependent multifunction, is merely Lipschitz continuous with respect to the time variable, then optimal controls can fail to be Lipschitz continuous. In these circumstances, however, a weaker Hölder continuity-like regularity property can be established. On the other hand, Lipschitz continuity of optimal controls is guaranteed for time-varying control sets under a positive linear independence hypothesis, when the control constraint sets are described, at each time, by a finite collection of functional inequalities.  相似文献   

6.
Optimal control of finite-level quantum systems is investigated, and iterative solution schemes for the optimization of a control representing laser pulses are developed. The purpose of this external field is to channel the system's wavefunction between given states in its most efficient way. Physically motivated constraints, such as limited laser resources or population suppression of certain states, are accounted for through an appropriately chosen cost functional. First-order necessary optimality conditions and second-order sufficient optimality conditions are investigated. For solving the optimal control problems, a cascadic non-linear conjugate gradient scheme and a monotonic scheme are discussed. Results of numerical experiments with a representative finite-level quantum system demonstrate the effectiveness of the optimal control formulation and efficiency and robustness of the proposed approaches.  相似文献   

7.
We consider a nonlinear antiplane problem which models the deformation of an elastic cylindrical body in frictional contact with a rigid foundation. The contact is modelled with Tresca’s law of dry friction in which the friction bound is slip dependent.The aim of this article is to study an optimal control problem which consists of leading the stress tensor as close as possible to a given target, by acting with a control on the boundary of the body. The existence of at least one optimal control is proved. Next we introduce a regularized problem, depending on a small parameter ρ, and we study the convergence of the optimal controls when ρ tends to zero. An optimality condition is delivered for the regularized problem.  相似文献   

8.
In this paper we derive the first and second variations for a nonlinear time scale optimal control problem with control and state-endpoints equality constraints. Using the first variation, a first order necessary condition for weak local optimality is obtained under the form of a weak maximum principle generalizing the Dubois–Reymond Lemma to the optimal control setting and time scales. A second order necessary condition in terms of the accessory problem is derived by using the nonnegativity of the second variation at all admissible directions. The control problem is studied under a controllability assumption, and with or without the shift in the state variable. These two forms of the problem are shown to be equivalent.  相似文献   

9.
Parametric nonlinear control problems subject to vector-valued mixed control-state constraints are investigated. The model perturbations are implemented by a parameter p of a Banach-space P. We prove solution differentiability in the sense that the optimal solution and the associated adjoint multiplier function are differentiable functions of the parameter. The main assumptions for solution differentiability are composed by regularity conditions and recently developed second-order sufficient conditions (SSC). The analysis generalizes the approach in [16, 20] and establishes a link between (1) shooting techniques for solving the associated boundary value problem (BVP) and (2) SSC. We shall make use of sensitivity results from finite-dimensional parametric programming and exploit the relationships between the variational system associated to BVP and its corresponding Riccati equation.Solution differentiability is the theoretical backbone for any numerical sensitivity analysis. A numerical example with a vector-valued control is presented that illustrates sensitivity analysis in detail.  相似文献   

10.
The aim of this paper is to study two classes of discontinuous control problems without any convexity assumption on the dynamics. In the first part we characterize the value function for the Mayer problem and the supremum cost problem using viscosity tools and the notion of ε-viability (near viability). These value functions are given with respect to discontinuous cost functionals. In the second part we obtain results describing the ε-viability (near viability) of singularly perturbed control systems.  相似文献   

11.
In this paper first- and second-order optimality conditions for a strong local minimum are presented for optimal control problems with pure state set-inclusion constraints. The first-order condition is of Pontryagin type, while the second-order condition is of the form of an accessory problem associated with the strong local minimality. This latter condition contains an extra term reflecting the presence of the pure state constraints.  相似文献   

12.
Arnd Rösch  Daniel Wachsmuth 《TOP》2006,14(2):263-278
A class of optimal control problems for a semilinear elliptic partial differential equation with mixed control-state constraints is considered. Existence results of an optimal control and necessary optimality conditions are stated. Moreover, a projection formula is derived that is equivalent to the necessary optimality conditions. As main result, the Lipschitz continuity of the optimal control is obtained.  相似文献   

13.
In the classical time optimal control problem, it is well known that the so-called Petrov condition is necessary and sufficient for the minimum time function to be locally Lipschitz continuous. In this paper, the same regularity result is obtained in the presence of nonsmooth state constraints. Moreover, for a special class of control systems we obtain a local semiconcavity result for the constrained minimum time function.  相似文献   

14.
We obtain a linear programming characterization for the minimum cost associated with finite dimensional reflected optimal control problems. In order to describe the value functions, we employ an infinite dimensional dual formulation instead of using the characterization via Hamilton-Jacobi partial differential equations. In this paper we consider control problems with both infinite and finite horizons. The reflection is given by the normal cone to a proximal retract set.  相似文献   

15.
In this paper, an optimal control problem for parabolic variational inequalities with delays and state constraint is investigated and the necessary conditions for optimal controls are derived.  相似文献   

16.
J. Sugie 《Applicable analysis》2013,92(1-3):217-227
This paper is concerned with the oscillatory behavior of the delay-differential equation X'(t)=F(t,xt) including the equations x'(t)=-a(t)x(t-r(t,x(t))), [display math001] as special cases.We give conditions for the existence of a nonoscillatory solution of (1) and criteria for the oscillation of all solutions of (1), aiming at extending or generalizing to (1) some of the recent oscillation and nonoscillation results for delay equations of the form x'(t)=-a(t)x(t-p)).  相似文献   

17.
This paper is concerned with first order necessary optimality conditions for state constrained control problems in separable Banach spaces. Assuming inward pointing conditions on the constraint, we give a simple proof of Pontryagin maximum principle, relying on infinite dimensional neighboring feasible trajectories theorems proved in [20]. Further, we provide sufficient conditions guaranteeing normality of the maximum principle. We work in the abstract semigroup setting, but nevertheless we apply our results to several concrete models involving controlled PDEs. Pointwise state constraints (as positivity of the solutions) are allowed.  相似文献   

18.
In this paper, we consider a class of optimal control problems which is governed by nonsmooth functional inequality constraints involving convolution. First, we transform it into an equivalent optimal control problem with smooth functional inequality constraints at the expense of doubling the dimension of the control variables. Then, using the Chebyshev polynomial approximation of the control variables, we obtain an semi-infinite quadratic programming problem. At last, we use the dual parametrization technique to solve the problem.  相似文献   

19.
In this article, an optimal control problem subject to a semilinear elliptic equation and mixed control-state constraints is investigated. The problem data depends on certain parameters. Under an assumption of separation of the active sets and a second-order sufficient optimality condition, Bouligand-differentiability (B-differentiability) of the solutions with respect to the parameter is established. Furthermore, an adjoint update strategy is proposed which yields a better approximation of the optimal controls and multipliers than the classical Taylor expansion, with remainder terms vanishing in L .  相似文献   

20.
This paper is devoted to the periodic problem for quasilinear parabolic hemivariational inequalities at resonance as well as at nonresonance. By use of the theory of multi-valued pseudomonotone operators, the notion of generalized gradient of Clarke and the property of the first eigenfunction, we build a Landesman-Lazer theory in the nonsmooth framework of quasilinear parabolic hemivariational inequalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号