首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
U(VI) was quantitatively extracted from 1·10−3M HNO3 using 5·10−3M Cyanex 302 in xylene and was stripped from organic phase with 5M HCl. The optimum extraction conditions have been evaluated by studying parameters like acidity, effect of diluents, extractant concentration and period of equilibration. Based on this data, the separations of uranium from binary and complex metal mixtures and its recovery from uranmicrolite tailings (leachate) were successfully tested. Uranium can be determined with a relative standard deviation of 0.4%.  相似文献   

2.
The extraction of In(III) from HCl, H2SO4, and HNO3 media using a 0.20 mol l−1 Cyanex 923 solution in toluene is investigated. In(III) is quantitatively extracted over a fairly wide range of HCl molarity while from H2SO4 and HNO3 media the extraction is quantitative at low acid concentration. The extracted metal ion has been recovered by stripping with 1.0 mol l−1 H2SO4. The stoichiometry of the In(III): Cyanex 923 complex is observed to be 1:2. The extraction of In(III) is insignificantly changed in diluents namely toluene, n-hexane, kerosene (160-200 °C), cyclohexane, and xylene having more or less the same dielectric constants, whereas, it decreases with increasing polarity of diluents such as cyclohexanone and chloroform. The extractant is stable towards prolonged acid contact and there is a negligible loss in its extraction efficiency even after recycling for 20 times. The extraction behavior of some commonly associated metal ions namely V(IV), Ti(IV), Al(III), Cr(III), Fe(III), Ga(III), Sb(III), Tl(III), Mn(II), Fe(II), Cu(II), Zn(II), Cd(II), Pb(II), and Tl(I) has also been investigated. Based on the partition data the conditions have been identified for attaining some binary separations of In(III). These conditions are extended for the recovery of pure indium from zinc blend, zinc plating mud, and galena. The recovery of the metal ions is around 95% with purity approximately 99%.  相似文献   

3.
Thorium(IV) was quantitatively extracted at pH 7.5 with 0.0001M of hexaacetato calix(6)arene in toluene and after stripping with 0.05M nitric acid, it was determined spectrophotometrically at 545 nm with thoron. Thorium(IV) was separated from commonly associated elements in fission products like uranium(VI), cesium(I), lead(II), strontium(II) and cerium(IV) in varying proportions. The method is simple, rapid, selective and applicable for the microgram concentrations of thorium(IV).  相似文献   

4.
Ajgaonkar HS  Dhadke PM 《Talanta》1997,44(4):563-570
A rapid method was developed for the solvent extraction separation of iron(III) and aluminium(III) from other elements with Cyanex 302 in chloroform as the diluent. Iron(III) was quantitatively extracted at pH 2.0-2.5 with 5 x 10(-3) M Cyanex 302 in chloroform whereas the extraction of aluminium(III) was quantitative in the pH range 3.0-4.0 with 10 x 10(-3) M Cyanex 302 in chloroform. Iron(III) was stripped from the organic phase with 1.0 M and aluminium(III) with 2.0 M hydrochloric acid. Both metals were separated from multicomponent mixtures. The method was applied to the separation of iron and aluminium from real samples.  相似文献   

5.
In this paper, interfacial tension of Cyanex 302 is measured by a Sigma-701 tensiometer and the adsorption parameters are calculated according to the Gibbs and Szyszkowski adsorption isotherms. The interfacial adsorbed behavior of Cyanex 302 is investigated. The results demonstrate that the dimer is the predominant species in the bulk organic phase; however, the monomer is adsorbed at the interface and more interfacially active. The effects of aqueous pH, ion strength, and temperature on the interfacial activity of Cyanex 302 in heptane are discussed and explained in detail. The lower interfacial activity of Cyanex 302 in aromatic hydrocarbon than in aliphatic hydrocarbon has also been determined. The values of interfacial excess at the saturated interface increase in the order n-heptane>cyclohexane>toluene>benzene, which is consistent with the order of extractability of lanthanum by Cyanex 302 in these diluents. The interfacial activity data are used to discuss the kinetic mechanism of lanthanum(III) extraction. It is shown that an interfacial mechanism is very probable, and the extraction limiting step is the reaction between the Cyanex 302 molecules in the organic phase sublayer and the adsorbed intermediate complex.  相似文献   

6.
《Fluid Phase Equilibria》1998,145(2):301-310
Cadmium extraction from phosphoric acid at different concentrations (0.7–8.8 M) by the commercial reagent Cyanex 302 in kerosene has been studied. Experimental results have been treated graphically and numerically and the formation of the species CdR2(HR) in the organic phase has been proposed. The value of the equilibrium constant increases with the phosphoric concentration in the aqueous media. Small Cyanex 302 concentrations in the organic phase are enough to remove Cd(II) quantitatively from phosphoric acid solutions.  相似文献   

7.
N,N,N',N',N',N'-Hexaethyl-2,2′,2'-(nitrilotrisethyleneoxy-2-benzyloxy)tris(acetamide) (L3) has been prepared and characterized by using IR, 1H NMR and positive-ion FAB mass spectra. The extraction of Th4+ and UO2 2+ with N,N,N',N',N',N'-hexaethyl-2,2',2'- (nitrilo-trisethyleneoxy)tris(acetamide) (L1), N,N,N',N',N',N'-hexaisopropyl-2,2',2'-(nitrilotrisethyleneoxy)tris(acetamide) (L2), and L3 was studied at 20±1 °C as a function of diluent, concentration of free extractant in organic phase and concentration of picrate in aqueous phase. It was found that the extracting powers of L1 and L2 for Th4+ are almost identical. The extracting power of L2 for UO22+ was slightly higher than that of L1. The difference in terminal groups (ethyl or isopropyl) of the extractants (L1 and L2) with same backbone has a little effect on the extracting power for both Th4+ and UO22+. The extracting powers of L3 for both Th4+ and UO22+ were larger than those of L1 and L2. The extractants (L1 and L3) having the same terminal group (ethyl) with different backbones have obviously different extracting powers for Th4+ or UO22+. The extracting powers of all three extractants L1, L2, and L3 for Th4+ were larger than those for UO22+. The compositions of extracted species in organic phase were predominantly ThL(Pic)3NO3 and UO2L(Pic)NO3, respectively (L denotes L1, L2 and L3). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Quantitative extraction of uranium(VI) is observed from 0.2M HCl by 5% (v/v) Cyanex 301. The extraction decreases with increasing acid concentration. Mixtures of Cyanex 301 with tri-n-butyl phosphate (TBP), didecyl sulfoxide (DDSO) and Alamine 308 result in significant synergism in the extraction process, where a species of the type UO2R2. L is proposed to be extracted [RH=Cyanex 301 and L=TBP, DDSO or Alamine 308]. Significant extraction of uranium(VI) by 5% (v/v) Alamine 308 is observed at and above 2M HCl, which increases with further increase in acidity attaining a maximum at 6M, after which a slight decrease in extration is observed. Mixtures of Alamine 308 with TBP or DDSO result in a synergism, where a species of the type (R 3 NH)2 UO2Cl4. Lis extracted. [R 3 N=Alamine 308, L=TBP or DDSO]. Mixtures of Alamine 308 and Cyanex 301 at 2M HCl result in a profound antagonism in the extraction of uranium(VI).  相似文献   

9.
The liquid-liquid extraction of zirconium(IV) from acidic chloride solutions was carried out with Cyanex 272 as an extractant diluted in kerosene. An increase of the acid concentration decreased the percentage extraction of metal, which indicates that the extraction follows ion exchange-type mechanism: MO2+(aq) + 2(HA)2(org) <--> MO (HA2)2(org) + 2H+(aq), where, M = Zr(IV); HA = Cyanex 272. The extraction of Zr(IV) increases with an increase of the extractant concentration. In a plot of log D vs. log[extractant], M is linear with a slope of approximately 2, indicating the association of two moles of extractant with the extracted metal species. On the other hand, the extraction decreases with an increase of the H+ ion concentration. A plot of log D vs. log[H+] gave a straight line with a negative slope of 1.7, indicating the exchange of two moles of hydrogen ions for every mole of Zr(IV). The effect of the Cl- ion concentration at a constant concentration of [H+] did not show any change in the D values. The addition of sodium salts enhanced the percentage extraction of metal, and followed the order of NaSCN > NaNO3 > Na2SO4 > NaCl. The stripping of metal from the loaded organic (L.O) with different acids indicated sulfuric acid to be the best stripping agent. An increase of the temperature during the extraction and stripping stages increases the metal transfer, showing that the process is exothermic. The synergism, regeneration and recycling capacity of Cyanex 272; the extraction behavior of associated elements, such as Hf(IV), Ti(IV), Al(III), Fe(III); and IR spectra of the extracted Zr-Cyanex 272 complex were studied.  相似文献   

10.
The extraction of U(IV) by bis(2,4,4-trimethylpentyl) monothiophosphinic acid (CYANEX 302) in kerosene from nitric acid solution has been investigated under equilibrium conditions. The effects of the different parameters affecting the extraction process were studied and the stoichiometry of the extracted species was elucidated. The kinetics of this extraction was also investigated using a stirred Lewis cell. The effects of the different parameters affecting the extraction rate as well as the temperature were separately investigated. The results are interpreted by a reaction mechanism where the extraction process of U(IV) is controlled by a chemical reaction at the interface rather than in the bulk phase.  相似文献   

11.
The extraction of thorium(IV) and uranium(VI) from nitric acid solutions has been studied using mixtures of bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex272 or HA), and synergistic extractants (S) such as tri-butylphosphate (TBP), tri-octylphosphine oxide (TOPO) or bis(2,4,4-trimethylpentyl)thiophosphinic acid (Cyanex301). The results showed that these metallic ions are extracted into kerosene as Th(OH)2(NO3)A·HA and UO2(NO3)A·HA with Cyanex272 alone. In the presence of neutral organophosphorus ligands TBP and TOPO, they are found to be extracted as Th(OH)2(NO3)A·HA·S and UO2(NO3)A·HA·S. On the other hand, Th(IV), U(VI) are extracted as Th(OH)2(NO3)A·HA·2S and UO2(NO3)A·HA·S in the presence of Cyanex301. The addition of neutral extractants such as TOPO and TBP to the extraction system enhanced the extraction efficiency of both elements while Cyanex301 as an acidic extractant has improved the selectivity between uranium and thorium. The effect of TOPO on the extraction was higher than other extractants. The equilibrium constants of above species have been estimated by non-linear regression method. The extraction amounts were determined and the results were compared with those of TBP. Also, it was found that the binding to the neutral ligands by the thorium–Cyanex272 complexes follows the neutral ligand basicity sequence.  相似文献   

12.
The extraction behaviour of Cu(II) from hydrochloric acid and lithium chloride solutions with di-n-pentyl sulphoxide (DPSO) and di-n-octyl sulphoxide (DOSO) has been investigated over a wide range of conditions. At a given strength of the extradant, the extraction increases with increase in HCl and LiCl concentrations. The extraction of the metal also increases with increase in extractant concentration at constant [HCl] or [LiCl]. The species extracted would appear to be CuCl2·2DPSO/2DOSO and CuCl 4 2− ·2DPSO. The extraction of the metal decreases with increase in initial aqueous metal concentration and also with increase in temperature. The extraction also depends on the nature of the diluent employed.  相似文献   

13.
Yadav AA  Khopkar SM 《Talanta》1971,18(8):833-837
Tributyl phosphate [30% solution in isobutyl methyl ketone (IBMK)] is used for the quantitative extraction of microgram amounts of lead from 3M hydrochloric acid containing lithium chloride (2M) as salting-out agent. It is then stripped from the organic phase with water and determined colorimetrically as its orange-red complex with 4-(2-pyridylazo)resorcinol at 520 nm. TBP alone cannot quantitatively extract lead in the absence of salting-out agents. The IBMK used as diluent does not extract lead under the conditions used. The period of equilibration needed is 5 min. Lead can be extracted in the presence of up to 100 times as much of certain other ions. The method is found to be applicable to analysis of gun-metal.  相似文献   

14.
Liquid-liquid extraction of platinum(II) with cyclic tetrathioethers   总被引:1,自引:0,他引:1  
The liquid-liquid extraction of platinum(II) with 12-, 14- and 16-membered cyclic tetrathioethers from chloride solution was studied. Bromocresol Green ion as a counter anion and 1,2-dichloroethane as an extraction solvent were used. The effect of thiourea on the extraction rate of platinum(II) was examined. Platinum(II) was hardly extracted with macrocyclic tetrathioethers in the absence of thiourea because of the slow extraction rate. The extraction rate of platinum(II) was considerably enhanced by the addition of thiourea. The extraction rate of platinum(II) with 16-membered cyclic tetrathioether was faster than that with 12- and 14-membered ones. Platinum(II) was quantitatively extracted with 16-membered cyclic tetrathioether into 1,2-dichloroethane within 5 h in the presence of thiourea.  相似文献   

15.
16.
The liquid-liquid extraction behavior of 2-ethylhexyltolylsulfoxide (EHTSO) towards uranium(VI) contained in nitric acid aqueous solution has been investigated. It was found that the extraction increases with increasing nitric acid concentration up to 5.0 mol/l and then decreases. Extraction also increases with increasing extractant concentration. The extracted species appears to be UO2(NO3)2 .2EHTSO. The influences of temperature, NH4NO3 and Na2C2O4 concentrations on the extraction equilibrium were also investigated and the thermodynamic functions of the extraction reaction were obtained.  相似文献   

17.
Panesar KS  Singh OV  Tandon SN 《Talanta》1994,41(8):1341-1344
Studies have been carried out on the extraction behavior of some metal ions of the first transition series using bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex 301) from mineral acid media. The effect of various parameters influencing the extraction such as the nature of the diluent, concentration of the acid and the extractant on the distribution has been investigated. Based on the distribution data some binary separations have been proposed. A flow sheet of a scheme is given for the recovery of manganese free cobalt from a spent catalyst used in the manufacture of poly(ethyleneterepthalate).  相似文献   

18.
A 40% tributyl phosphate solution in xylene was used for the quantitative extraction of arsenic(III) from 4M hydrochloric acid/2M lithium chloride. It was stripped from the organic phase with water and determined volumetrically with potassium bromate. The period of equilibration was 3 min. Arsenic was extracted in presence of copper, cobalt, nickel, tin, bismuth, iron, cadmium and other elements which are usually associated with it in sulphide minerals and alloys.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号