首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
The complexes [Ru(CN)4(HAT)]2-, [{Ru(CN)4}2(mu2-HAT)]4- and [{Ru(CN)4}3(mu3-HAT)]6- (HAT = hexaaza-triphenylene) contain four, eight and twelve externally-directed cyanide ligands, respectively; they show strongly solvatochromic and intense MLCT absorptions, and [3]6- forms a high-dimensionality cyanide-bridged coordination network with Nd(III), in which Ru --> Nd energy transfer results in sensitised near-IR luminescence.  相似文献   

2.
Reaction of the cyanoruthenate anions [Ru(bpym)(CN)4]2- and [[Ru(CN)4]2(mu-bpym)]4- (bpym = 2,2'-bipyrimidine) with lanthanide(III) salts resulted in the crystallization of coordination networks based on Ru-CN-Ln bridges. Four types of structure were obtained: [Ru(bpym)(CN)4][Ln(NO3)(H2O)5] (Ru-Ln; Ln = Sm, Nd, and Gd) are one-dimensional helical chains; [Ru(bpym)(CN)4]2[Ln(NO3)(H2O)2][Ln(NO3)(0.5)(H2O)(5.5)](NO3)(0.5).5.5H2O (Ru-Ln; Ln = Er and Yb) are two-dimensional sheets containing cross-linked chains based on Ru2Ln2(mu-CN)4 diamond units, which are linked into one-dimensional chains via shared Ru atoms; [[Ru(CN)4]2(mu-bpym)][Ln(NO3)(H2O)5]2.3H2O (Ru2-Ln; Ln = Nd and Sm) are one-dimensional ladders with parallel Ln-NC-Ru-CN-Ln-NC strands connected by the bipyrimidine "cross pieces" acting as rungs on the ladder; and [[Ru(CN)4]2(mu-bpym)][Ln(H2O)6](0.5)[Ln(H2O)4](NO3)(0.5).nH2O (Ru2-Ln; Ln = Eu, Gd, and Yb; n = 8.5, 8.5, and 8, respectively) are three-dimensional networks in which two-dimensional sheets of Ru2Ln2(mu-CN)4 diamonds are connected via cyanide bridges to Ln(III) ions between the layers. Whereas Ru-Gd shows weak triplet metal-to-ligand charge-transfer (3MLCT) luminescence in the solid state from the Ru-bipyrimidine chromophore, in Ru-Nd, Ru-Er, and Ru-Yb, the Ru-based emission is quenched, and all of these show, instead, sensitized lanthanide-based near-IR luminescence following a Ru --> Ln energy transfer. Similarly, Ru2-Nd and Ru2-Yb show lanthanide-based near-IR emission following excitation of the Ru-bipyrimidine chromophore. Time-resolved luminescence measurements suggest that the Ru --> Ln energy-transfer rate is faster (when Ln = Yb and Er) than in related complexes based on the [Ru(bipy)(CN)4]2- chromophore, because the lower energy of the Ru-bpym 3MLCT provides better spectroscopic overlap with the low-energy f-f states of Yb(III) and Er(III). In every case, the lanthanide-based luminescence is relatively short-lived as a result of the CN oscillations in the lattice.  相似文献   

3.
The complexes [Ru((t)Bu(2)bipy)(bpym)X(2)] (X = Cl, NCS) and [M((t)Bu(2)bipy)(2)(bpym)][PF(6)](2) (M = Ru, Os) all have a low-energy LUMO arising from the presence of a 2,2'-bipyrimidine ligand, and consequently have lower-energy (1)MLCT and (3)MLCT states than analogous complexes of bipyridine. The vacant site of the bpym ligand provides a site at which [Ln(diketonate)(3)] units can bind to afford bipyrimidine-bridged dinuclear Ru-Ln and Os-Ln dyads; four such complexes have been structurally characterised. UV/Vis and luminescence spectroscopic studies show that binding of the Ln(III) fragment at the second site of the bpym ligand reduces the (3)MLCT energy of the Ru or Os fragment still further. The result is that in the dyads [Ru((t)Bu(2)bipy)X(2)(mu-bpym)Ln(diketonate)(3)] (X = Cl, NCS) and [Os((t)Bu(2)bipy)(2)(mu-bpym)Ln(diketonate)(3)][PF(6)](2) the (3)MLCT is too low to sensitise the luminescent f-f states of Nd(III) and Yb(III), but in [Ru((t)Bu(2)bipy)(2)(mu-bpym)Ln(diketonate)(3)][PF(6)](2) the (3)MLCT energy of 13,500 cm(-1) permits energy transfer to Yb(III) and Nd(III) resulting in sensitised near-infrared luminescence on the microsecond timescale.  相似文献   

4.
A series of cyanide-bridged coordination networks has been prepared which contain [Ru(phen)(CN)4](2-) anions, Ln(III) cations, and additional oligopyridine ligands (1,10-phenanthroline, 2,2':6',2'-terpyridine or 2,2'-bipyrimidine) which coordinate to the Ln(III) centres. Five structural types have been identified and examples of each type of structure are described: these are hexanuclear Ru4Ln2 clusters; two-dimensional Ru-Ln sheets with a honeycomb pattern of edge-linked Ru6Ln6 hexagons; one-dimensional chains consisting of two parallel cross-linked strands in a ladder-like arrangement; simple single-stranded chains of alternating Ru/Ln components; and a one-dimensional 'chain of squares' in which Ru2Ln2 squares are linked by bipyrimidine bridging ligands which connect to the Ln(III) corners of adjacent squares in the sequence. The 3MLCT luminescence characteristic of the [Ru(phen)(CN)4](2-) units is quenched in those networks containing Ln(III) which have low-lying near-infrared luminescent f-f states [Pr(III), Nd(III), Er(III), Yb(III)], with sensitised Ln(III)-based near-IR luminescence generated by d --> f energy-transfer. The rate of d --> f energy-transfer, and hence the degree of quenching of the 3MLCT luminescence from the [Ru(phen)(CN)4](2-) units, depends on the availability of f-f levels of an appropriate energy on the Ln(III) centre, with Nd(III) (with a high density of low-lying f-f states) being the most effective energy-acceptor and Yb(III) (with a single low-lying f-f state) being the least effective. Rates of d --> f energy-transfer to different Ln(III) centres could be determined from both the residual (partially quenched) lifetimes of the 3MLCT luminescence, and--in the case of the Yb(III) networks--by a rise-time for the sensitised near-IR luminescence. The presence of the 'blocking' polypyridyl ligands, which reduced the number of cyanide and water ligands that would otherwise coordinate to the Ln(III) centres, resulted in increases in the Ln(III)-based emission lifetimes compared to networks where these blocking ligands were not used.  相似文献   

5.
Reaction of the anionic cyanometallate chromophore [{Ru(CN)4}3(micro3-HAT)]6- with [MII(tren)]2+ complexes (M=ZnII, CuII) provides discrete tetradecanuclear clusters of formula [{MII(tren)(micro-CN)}11{Ru3(HAT)(CN)}]16+; the weak luminescence of the Ru3 chromophore is substantially enhanced in the presence of ZnII ions, whereas it is completely quenched when CuII centers are present.  相似文献   

6.
A series of dinuclear compounds of [Ru(bpy)(2)(tpphz)Ln(TTA)(3)](PF(6))(2) (tpphz = tetrapyrido[3,2-a:2',3'-c:3',2'-h:3',4'-j]phenazine; Ln = Er(iii), Nd(iii), Yb(iii) and Gd(iii); TTA = 2-thenoyltrifluoroacetone) have been prepared by attachment of a [Ln(TTA)(3)] fragment at the vacant diimine site of the luminescent mononuclear complex [Ru(bpy)(2)(tpphz)](PF(6))(2). In the solid state, in CH(2)Cl(2) solution and in Tris-HCl buffer solution of these dinuclear complexes , sensitized near-infrared (NIR) luminescence is observed from Nd and Yb centres following excitation of the d-block unit, which results from the effective Ru → Ln (Ln = Nd, Yb) energy transfer, but no Er-based NIR luminescence is produced. The (3)MLCT (MLCT = metal to ligand charge transfer) emission is partly quenched in the complex, slightly increased in the complex, and is not changed in the complex. Interestingly, alpha-fetal protein (AFP) tends to decrease the NIR luminescence intensity of the complex in Tris-HCl buffer solution. A novel NIR luminescent method for the determination of AFP was developed with a linear range of 0.5-18 ng mL(-1), and a detection limit of 0.2 ng mL(-1) based on 3 times the ratio of the signal-to-noise. Considering the attractive features, such as good selectivity, stability and rapidity, the proposed NIR luminescent method provides promising potential for AFP detection in clinical diagnosis and biomedical applications.  相似文献   

7.
The electronic absorption and circular dichroism (CD) spectra of the complexes produced by the one, two, and three electron reduction of Delta-[Ru(bipy)(3)](2+) and Delta-[Os(bipy)(3)](2+) are reported. The CD spectra give unequivocal proof that the added electrons are localized on individual bipiridine ligands and thus that the complexes are correctly formulated [M(bipy)(2)(bipy(-))](+), [M(bipy)(bipy(-))(2)](0), and [M(bipy(-))(3)](-). The absorption spectra of the triply reduced species [M(bipy(-))(3)](-) (M = Ru, Os) are compared to those of the Fe(II) and Ir(III) analogs. The luminescence spectra of the two triply reduced complexes [Ru(bipy(-))(3)](-) and [Os(bipy(-))(3)](-). are also presented. The MLCT luminescence found in the parent complexes is completely quenched and is replaced by a weak luminescence attributed to the pi(10) --> pi(7) transition of the (coordinated) [bipy](-) ion.  相似文献   

8.
Co-crystallization of K2[Ru(bipy)(CN)4] with lanthanide(III) salts (Ln = Pr, Nd, Gd, Er, Yb) from aqueous solution affords coordination oligomers and networks in which the [Ru(bipy)(CN)4]2- unit is connected to the lanthanide cation via Ru-CN-Ln bridges. The complexes fall into two structural types: [{Ru(bipy)(CN)4}2{Ln(H2O)m}{K(H2O)n}] x xH2O (Ln = Pr, Er, Yb; m = 7, 6, 6, respectively), in which two [Ru(bipy)(CN)4]2- units are connected to a single lanthanide ion by single cyanide bridges to give discrete trinuclear fragments, and [{Ru(bipy)(CN)4}3{Ln(H2O)4}2] x xH2O (Ln = Nd, Gd), which contain two-dimensional sheets of interconnected, cyanide-bridged Ru2Ln2 squares. In the Ru-Gd system, the [Ru(bipy)(CN)4]2- unit shows the characteristic intense (3)metal-to-ligand charge transfer luminescence at 580 nm with tau = 550 ns; with the other lanthanides, the intensity and lifetime of this luminescence are diminished because of a Ru --> Ln photoinduced energy transfer to low-lying emissive states of the lanthanide ions, resulting in sensitized near-infrared luminescence in every case. From the degree of quenching of the Ru-based emission, Ru --> Ln energy-transfer rates can be estimated, which are in the order Yb (k(EnT) approximately 3 x 10(6) sec(-1), the slowest energy transfer) < Er < Pr < Nd (k(EnT) approximately 2 x 10(8) sec(-1), the fastest energy transfer). This order may be rationalized on the basis of the availability of excited f-f levels on the lanthanide ions at energies that overlap with the Ru-based emission spectrum. In every case, the lifetime of the lanthanide-based luminescence is short (tens/hundreds of nanoseconds, instead of the more usual microseconds), even when the water ligands on the lanthanide ions are replaced by D2O to eliminate the quenching effects of OH oscillators; we tentatively ascribe this quenching effect to the cyanide ligands.  相似文献   

9.
Overlayer thin films of vinylbipyridine (vbpy)-containing Ru and Zn complexes have been formed on top of ruthenium dye complexes adsorbed to TiO(2) by reductive electropolymerization. The goal was to create an efficient, water-stable photoelectrode or electrodes. An adsorbed-[Ru(vbpy)(2)(dcb)](PF(6))(2)/poly-[Ru(vbpy)(3)](PF(6))(2) surface composite displays excellent stability toward dissolution in water, but the added overlayer film greatly decreases incident photon-to-current conversion efficiencies (IPCE) in propylene carbonate with I(3)(-)/I(-) as the carrier couple. An ads-[Ru(vbpy)(2)(dcb)](PF(6))(2)/poly-[Zn(vbpy)(3)](PF(6))(2) composite displays no loss in IPCE compared to ads-[Ru(vbpy)(2)(dcb)](PF(6))(2) but is susceptible to film breakdown in the presence of water by solvolysis and loss of the cross-linking Zn(2+) ions. Success was attained with an ads-[Ru(vbpy)(2)(dcb)](PF(6))(2)/poly-[Ru(vbpy)(2)(dppe)](PF(6))(2) composite. In this case the electropolymerized layer is transparent in the visible. The composite electrode is stable in water, the IPCE in propylene carbonate with I(3)(-)/I(-) is comparable to the adsorbed complex, and a significant IPCE is observed in water with the quinone/hydroquinone carrier couple. The assembly [(bpy)(2)(CN)Ru(CN)Ru(vbpy)(2)(NC)Ru(CN)(bpy)(2)](PF(6))(2) ([Ru(CN)Ru(NC)Ru](PF(6))(2)) adsorbs spontaneously on TiO(2), and electropolymerization of thin layers of the assembly to give ads-[Ru(CN)Ru(NC)Ru](PF(6))(2)/poly-[Ru(CN)Ru(NC)Ru](PF(6))(2) enhances IPCE and has no deleterious effect on the IPCE/Ru.  相似文献   

10.
We report the synthesis, structure and properties of the cyanide-bridged dinuclear complex ions [Ru(L)(bpy)(μ-NC)M(CN)(5)](2-/-) (L = tpy, 2,2';6',2'-terpyridine, or tpm, tris(1-pyrazolyl)methane, bpy = 2,2'-bipyridine, M = Fe(II), Fe(III), Cr(III)) and the related monomers [Ru(L)(bpy)X](2+) (X = CN(-) and NCS(-)). All the monomeric compounds are weak MLCT emitters (λ = 650-715 nm, ? ≈ 10(-4)). In the Fe(II) and Cr(III) dinuclear systems, the cyanide bridge promotes efficient energy transfer between the Ru-centered MLCT state and a Fe(II)- or Cr(III)-centered d-d state, which results either in a complete quenching of luminescence or in a narrow red emission (λ ≈ 820 nm, ? ≈ 10(-3)) respectively. In the case of Fe(III) dinuclear systems, an electron transfer quenching process is also likely to occur.  相似文献   

11.
Novel polynuclear complexes of rhenium and ruthenium containing PCA (PCA = 4-pyridinecarboxaldehyde azine or 4-pyridinealdazine or 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene) as a bridging ligand have been synthesized as PF(6-) salts and characterized by spectroscopic, electrochemical, and photophysical techniques. The precursor mononuclear complex, of formula [Re(Me(2)bpy)(CO)(3)(PCA)](+) (Me(2)bpy = 4,4'-dimethyl-2,2'-bipyridine), does not emit at room temperature in CH(3)CN, and the transient spectrum found by flash photolysis at lambda(exc) = 355 nm can be assigned to a MLCT (metal-to-ligand charge transfer) excited state [(Me(2)bpy)(CO)(3)Re(II)(PCA(-))](+), with lambda(max) = 460 nm and tau < 10 ns. The spectral properties of the related complexes [[Re(Me(2)bpy)(CO)(3)}(2)(PCA)](2+), [Re(CO)(3)(PCA)(2)Cl], and [Re(CO)(3)Cl](3)(PCA)(4) confirm the existence of this low-energy MLCT state. The dinuclear complex, of formula [(Me(2)bpy)(CO)(3)Re(I)(PCA)Ru(II)(NH(3))(5)](3+), presents an intense absorption in the visible spectrum that can be assigned to a MLCT d(pi)(Ru) --> pi(PCA); in CH(3)CN, the value of lambda (max) = 560 nm is intermediate between those determined for [Ru(NH(3))(5)(PCA)](2+) (lambda(max) = 536 nm) and [(NH(3))(5)Ru(PCA)Ru(NH(3))(5)](4+) (lambda(max) = 574 nm), indicating a significant decrease in the energy of the pi-orbital of PCA. The mixed-valent species, of formula [(Me(2)bpy)(CO)(3)Re(I)(PCA)Ru(III)(NH(3))(5)](4+), was obtained in CH(3)CN solution, by bromine oxidation or by controlled-potential electrolysis at 0.8 V in a OTTLE cell of the [Re(I),Ru(II)] precursor; the band at lambda(max) = 560 nm disappears completely, and a new band appears at lambda(max) = 483 nm, assignable to a MMCT band (metal-to-metal charge transfer) Re(I) --> Ru(III). By using the Marcus-Hush formalism, both the electronic coupling (H(AB)) and the reorganization energy (lambda) for the metal-to-metal intramolecular electron transfer have been calculated. Despite the considerable distance between both metal centers (approximately 15.0 Angstroms), there is a moderate coupling that, together with the comproportionation constant of the mixed-valent species [(NH(3))(5)Ru(PCA)Ru(NH(3))(5)](5+) (K(c) approximately 10(2), in CH(3)CN), puts into evidence an unusual enhancement of the metal-metal coupling in the bridged PCA complexes. This effect can be accounted for by the large extent of "metal-ligand interface", as shown by DFT calculations on free PCA. Moreover, lambda is lower than the driving force -DeltaG degrees for the recombination charge reaction [Re(II),Ru(II)] --> [Re(I),Ru(III)] that follows light excitation of the mixed-valent species. It is then predicted that this reverse reaction falls in the Marcus inverted region, making the heterodinuclear [Re(I),Ru(III)] complex a promising model for controlling the efficiency of charge-separation processes.  相似文献   

12.
Slow evaporation of aqueous solutions containing mixtures of Na 2[Os(phen)(CN) 4], Ln(III) salts (Ln = Pr, Nd, Gd, Er, Yb), and (in some cases) an additional ligand such as 1,10-phenanthroline (phen) or 2,2'-bipyrimidine (bpym) afforded crystalline coordination networks in which the [Os(phen)(CN) 4] (2-) anions are coordinated to Ln(III) cations via Os-CN-Ln cyanide bridges. The additional diimine ligands, if present, also coordinate to the Ln(III) centers. Several types of structure have been identified by X-ray crystallographic studies. Photophysical studies showed that the characteristic emission of the [Os(phen)(CN) 4] (2-) chromophore, which occurs at approximately 680 nm in this type of coordination environment with a triplet metal-to-ligand charge transfer ( (3)MLCT) energy content of approximately 16 000 cm (-1), is quenched by energy transfer to those Ln(III) centers (Pr, Nd, Er, Yb) that have low-lying f-f states capable of accepting energy from the Os(II)-based (3)MLCT state. Time-resolved studies on the residual (partially quenched) Os(II)-based luminescence allowed the rates of Os(II) --> Ln(III) energy transfer to be evaluated. The measured rates varied substantially, having values of >5 x 10 (8), approximately 1 x 10 (8), and 2.5 x 10 (7) s (-1) for Ln = Nd, Er or Yb, and Pr, respectively. These differing rates of Os(II) --> Ln(III) energy transfer can be rationalized on the basis of the availability of f-f states of the different Ln(III) centers that are capable of acting as energy acceptors. In general, the rates of Os(II) --> Ln(III) energy transfer are an order of magnitude faster than the rates of Ru(II) --> Ln(III) energy transfer in a previously described series of [Ru(bipy)(CN) 4] (2-)/Ln(III) networks. This is ascribed principally to the lower energy of the Os(II)-based (3)MLCT state, which provides better spectroscopic overlap with the low-lying f-f states of the Ln(III) ions.  相似文献   

13.
Metal(III)-polypyridine complexes [M(NN)(3)](3+) (M = Ru or Fe; NN = bipyridine (bpy), phenanthroline (phen), or 4,7-dimethylphenanthroline (Me(2)-phen)) oxidize the nitrosylpentaaquachromium(III) ion, [Cr(aq)NO](2+), with an overall 4:1 stoichiometry, 4 [Ru(bpy)(3)](3+) + [Cr(aq)NO](2+) + 2 H(2)O --> 4 [Ru(bpy)(3)](2+) + [Cr(aq)](3+) + NO(3)(-) + 4 H(+). The kinetics follow a mixed second-order rate law, -d[[M(NN)(3)](3+)]/dt = nk[[M(NN)(3)](3+)][[Cr(aq)NO](2+)], in which k represents the rate constant for the initial one-electron transfer step, and n = 2-4 depending on reaction conditions and relative rates of the first and subsequent steps. With [Cr(aq)NO](2+) in excess, the values of nk are 283 M(-1) s(-1) ([Ru(bpy)(3)](3+)), 7.4 ([Ru(Me(2)-phen)(3)](3+)), and 5.8 ([Fe(phen)(3)](3+)). In the proposed mechanism, the one-electron oxidation of [Cr(aq)NO](2+) releases NO, which is further oxidized to nitrite, k = 1.04x10(6) M(-1) s(-1), 6.17x10(4), and 1.12x10(4) with the three respective oxidants. Further oxidation yields the observed nitrate. The kinetics of the first step show a strong correlation with thermodynamic driving force. Parallels were drawn with oxidative homolysis of a superoxochromium(III) ion, [Cr(aq)OO](2+), to gain insight into relative oxidizability of coordinated NO and O(2), and to address the question of the "oxidation state" of coordinated NO in [Cr(aq)NO](2+).  相似文献   

14.
The new pro-ligand 4-methyl-4'-(carbonylamino(2-(tert-butoxycarbonylamino)ethyl))-2,2'-bipyridyl (L1) has been prepared and used to synthesise the complex fac-Re(I)Cl(CO)3(L1) 1 and the complex salts [M(II)(bipy)2(L1)](PF6)2 (M=RuII 8 or OsII 15). Deprotection with trifluoroacetic acid affords the amine-functionalised derivatives fac-Re(I)Cl(CO)3(L2) 2, [M(II)(bipy)2(L2)](PF6)2 (M=RuII 9 or OsII 16) which react with the dianhydride of diethylenetriamine pentaacetic acid (DTPA) to give the binuclear complex {fac-Re(I)Cl(CO)3}2(L3) 3 and the complex salts [{M(II)(bipy)2}2(L3)](PF6)4 (M = RuII 10 or OsII 17). The latter react with salts Ln(OTf)3 to afford a series of 12 heterotrimetallic compounds that contain a lanthanide (Ln) ion in the DTPA binding site; {fac-Re(I)Cl(CO)3}2(L3)LnIII (Ln=Nd 4, Er 5, Yb 6 or Y 7) and [{M(II)(bipy)2}2(L3)LnIII](PF6)(OTf)3 (M=RuII, Ln=Nd 11, Er 12, Yb 13 or Y 14; M=OsII, Ln=Nd 18, Er 19, Yb 20 or Y 21). All of these trimetallic species display absorption bands ascribed to metal-to-ligand charge-transfer (MLCT) excitations, and luminescence measurements show that these excited states can be used to sensitise near-infrared emission from LnIII (Ln=Nd, Er or Yb) ions. Single crystal X-ray structures of L1 and [RuII(bipy)2(L2H)](H2PO4)3.(CH3)2CO.0.8H2O were obtained, the latter revealing the presence of H2PO4- counter anions, the source of which is presumed to be hydrolysis of PF6- ions.  相似文献   

15.
Paramagnetic diruthenium(III) complexes (acac)(2)Ru(III)(mu-OC(2)H(5))(2)Ru(III)(acac)(2) (6) and [(acac)(2)Ru(III)(mu-L)Ru(III)(acac)(2)](ClO(4))(2), [7](ClO(4))(2), were obtained via the reaction of binucleating bridging ligand, N,N,N',N'-tetra(2-pyridyl)-1,4-phenylenediamine [(NC(5)H(4))(2)-N-C(6)H(4)-N-(NC(5)H(4))(2), L] with the monomeric metal precursor unit (acac)(2)Ru(II)(CH(3)CN)(2) in ethanol under aerobic conditions. However, the reaction of L with the metal fragment Ru(II)(bpy)(2)(EtOH)(2)(2+) resulted in the corresponding [(bpy)(2)Ru(II) (mu-L) Ru(II)(bpy)(2)](ClO(4))(4), [8](ClO(4))(4). Crystal structures of L and 6 show that, in each case, the asymmetric unit consists of two independent half-molecules. The Ru-Ru distances in the two crystallographically independent molecules (F and G) of 6 are found to be 2.6448(8) and 2.6515(8) A, respectively. Variable-temperature magnetic studies suggest that the ruthenium(III) centers in 6 and [7](ClO(4))(2) are very weakly antiferromagnetically coupled, having J = -0.45 and -0.63 cm(-)(1), respectively. The g value calculated for 6 by using the van Vleck equation turned out to be only 1.11, whereas for [7](ClO(4))(2), the g value is 2.4, as expected for paramagnetic Ru(III) complexes. The paramagnetic complexes 6 and [7](2+) exhibit rhombic EPR spectra at 77 K in CHCl(3) (g(1) = 2.420, g(2) = 2.192, g(3) = 1.710 for 6 and g(1) = 2.385, g(2) = 2.177, g(3) = 1.753 for [7](2+)). This indicates that 6 must have an intermolecular magnetic interaction, in fact, an antiferromagnetic interaction, along at least one of the crystal axes. This conclusion was supported by ZINDO/1-level calculations. The complexes 6, [7](2+), and [8](4+) display closely spaced Ru(III)/Ru(II) couples with 70, 110, and 80 mV separations in potentials between the successive couples, respectively, implying weak intermetallic electrochemical coupling in their mixed-valent states. The electrochemical stability of the Ru(II) state follows the order: [7](2+) < 6 < [8](4+). The bipyridine derivative [8](4+) exhibits a strong luminescence [quantum yield (phi) = 0.18] at 600 nm in EtOH/MeOH (4:1) glass (at 77 K), with an estimated excited-state lifetime of approximately 10 micros.  相似文献   

16.
Condensation of cyanometalates and cluster building blocks leads to the formation of hybrid molecular cyanometalate cages. Specifically, the reaction of [Cs subset [CpCo(CN)(3)](4)[CpRu](3)] and [(cymene)(2)Ru(3)S(2)(NCMe)(3)]PF(6) produced [Cs subset [CpCo(CN)(3)](4)[(cymene)(2)Ru(3)S(2)][CpRu](3)](PF(6))(2), Cs subset Co(4)Ru(6)S(2)(2+). Single-crystal X-ray diffraction, NMR spectroscopy, and ESI-MS measurements show that Cs subset Co(4)Ru(6)S(2)(2+ ) consists of a Ru(4)Co(4)(CN)(12) box fused with a Ru(3)S(2) cluster via a common Ru atom. The reaction of PPN[CpCo(CN)(3)] and 0.75 equiv of [(cymene)(2)(MeCN)(3)Ru(3)S(2)](PF(6))(2) in MeCN solution produced [[CpCo(CN)(3)](4)[(cymene)(2)Ru(3)S(2)](3)](PF(6))(2), Co(4)Ru(9)S(6)(2+). Crystallographic analysis, together with NMR and ESI-MS measurements, shows that Co(4)Ru(9)S(6)(2+ ) consists of a Ru(3)Co(4)(CN)(9) "defect box" core, wherein each Ru is fused to a Ru(3)S(2) clusters. The analogous condensation using [CpRh(CN)(3)](-) in place of [CpCo(CN)(3)](-) produced the related cluster-cage Rh(4)Ru(9)S(6)(2+). Electrochemical analyses of both Co(4)Ru(9)S(6)(2+) and Rh(4)Ru(9)S(6)(2+) can be rationalized in the context of reduction at the cluster and the Co(III) subunits, the latter being affected by the presence of alkali metal cations.  相似文献   

17.
The alpha-C-H bonds of 3-methyl-2-butanone, 3-pentanone, and 2-methyl-3-pentanone were activated on the sulfur center of the disulfide-bridged ruthenium dinuclear complex [(RuCl(P(OCH3)3)2)2(mu-S2)(mu-Cl)2] (1) in the presence of AgX (X = PF6, SbF6) with concomitant formation of C-S bonds to give the corresponding ketonated complexes [(Ru(CH3CN)2(P(OCH3)3)2)(mu-SSCHR1COR2)(Ru(CH3CN)3(P(OCH3)3)2)]X3 ([5](PF6)3, R1 = H, R2 = CH(CH3)2, X = PF6; [6](PF6)3, R1 = CH3, R2 = CH2CH3, X = PF6; [7](SbF6)3, R1 = CH3, R2 = CH(CH3)2, X = SbF6). For unsymmetric ketones, the primary or the secondary carbon of the alpha-C-H bond, rather than the tertiary carbon, is preferentially bound to one of the two bridging sulfur atoms. The alpha-C-H bond of the cyclic ketone cyclohexanone was cleaved to give the complex [(Ru(CH3CN)2(P(OCH3)3)2)(mu-SS-1- cyclohexanon-2-yl)(Ru(CH3CN)3(P(OCH3)3)2)](SbF6)3 ([8](SbF6)3). And the reactions of acetophenone and p-methoxyacetophenone, respectively, with the chloride-free complex [(Ru(CH3CN)3(P(OCH3)3)2)2(mu-S2)]4+ (3) gave [(Ru(CH3CN)2(P(OCH3)3)2)(mu-SSCH2COAr)(Ru(CH3CN)3(P(OCH3)3)2)](CF3SO3)3 ([9](CF3SO3)3, Ar = Ph; [10](CF3SO3)3, Ar = p-CH3OC6H4). The relative reactivities of a primary and a secondary C-H bond were clearly observed in the reaction of butanone with complex 3, which gave a mixture of two complexes, i.e., [(Ru(CH3CN)2(P(OCH3)3)20(mu-SSCH2COCH2CH3)(Ru(CH3CN)3(P(OCH3)3)2)](CF3SO3)3 ([11](CF3SO3)3) and [(Ru(CH3CN)2(P(OCH3)3)2)(mu-SSCHCH3COCH3)(Ru(CH3CN)3(P(OCH3)2)](CF3SO3)3 ([12](CF3SO3)3), in a molar ratio of 1:1.8. Complex 12 was converted to 11 at room temperature if the reaction time was prolonged. The relative reactivities of the alpha-C-H bonds of the ketones were deduced to be in the order 2 degrees > 1 degree > 3 degrees, on the basis of the consideration of contributions from both electronic and steric effects. Additionally, the C-S bonds in the ketonated complexes were found to be cleaved easily by protonation at room temperature. The mechanism for the formation of the ketonated disulfide-bridged ruthenium dinuclear complexes is as follows: initial coordination of the oxygen atom of the carbonyl group to the ruthenium center, followed by addition of an alpha-C-H bond to the disulfide bridging ligand, having S=S double-bond character, to form a C-S-S-H moiety, and finally completion of the reaction by deprotonation of the S-H bond.  相似文献   

18.
The mixed-metal supramolecular complexes [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 (tpy = 2,2':6',2'-terpyridine and tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine) were synthesized and characterized. These complexes contain ruthenium bridged by tppz to platinum centers to form stereochemically defined linear assemblies. X-ray crystallographic determinations of the two complexes confirm the identity of the metal complexes and reveal intermolecular interactions of the Pt sites in the solid state for [(tpy)Ru(tppz)PtCl](PF6)3 with a Pt...Pt distance of 3.3218(5) A. The (1)H NMR spectra show the expected splitting patterns characteristic of stereochemically defined mixed-metal systems and are assigned with the use of (1)H-(1)H COSY and NOESY. Electronic absorption spectroscopy displays intense ligand-based pi --> pi* transitions in the UV and MLCT transitions in the visible. Electrochemically [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 display reversible Ru (II/III) couples at 1.63 and 1.83 V versus Ag/AgCl, respectively. The complexes display very low potential tppz (0/-) and tppz(-/2-) couples, relative to their monometallic synthons, [(tpy)Ru(tppz)](PF6)2 and [Ru(tppz)2](PF6)2, consistent with the bridging coordination of the tppz ligand. The Ru(dpi) --> tppz(pi*) MLCT transitions are also red-shifted relative to the monometallic synthons occurring in the visible centered at 530 and 538 nm in CH3CN for [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4, respectively. The complex [(tpy)Ru(tppz)PtCl](PF6)3 displays a barely detectable emission from the Ru(dpi) --> tppz(pi*) (3)MLCT in CH 3CN solution at RT. In contrast, [ClPt(tppz)Ru(tppz)PtCl](PF6)4 displays an intense emission from the Ru(dpi) --> tppz(pi*) (3)MLCT state at RT with lambda max(em) = 754 nm and tau = 80 ns.  相似文献   

19.
The tetradentate ligands 1,8-bis(pyrid-2-yl)-3,6-dithiaoctane (pdto) and 1,8-bis(benzimidazol-2-yl)-3,6-dithiaoctane (bbdo) form the complexes [Ru(pdto)(mu-Cl)](2)(ClO(4))(2) 1 and [Ru(bbdo)(mu-Cl)](2)(ClO(4))(2) 2 respectively. The new di-mu-chloro dimers 1 and 2 undergo facile symmetrical bridge cleavage reactions with the diimine ligands 2,2'-bipyridine (bpy) and dipyridylamine (dpa) to form the six-coordinate complexes [Ru(pdto)(bpy)](ClO(4))(2) 3, [Ru(bbdo)(bpy)](ClO(4))(2) 4, [Ru(pdto)(dpa)](ClO(4))(2) 5 and [Ru(bbdo)(dpa)](ClO(4))(2) 6 and with the triimine ligand 2,2':6,2'-terpyridine (terpy) to form the unusual seven-coordinate complexes [Ru(pdto)(terpy)](ClO(4))(2) 7 and [Ru(bbdo)(terpy)](ClO(4))(2) 8. In 1 the dimeric cation [Ru(pdto)(mu-Cl)](2)(2+) is made up of two approximately octahedrally coordinated Ru(II) centers bridged by two chloride ions, which constitute a common edge between the two Ru(II) octahedra. Each ruthenium is coordinated also to two pyridine nitrogen and two thioether sulfur atoms of the tetradentate ligand. The ligand pdto is folded around Ru(II) as a result of the cis-dichloro coordination, which corresponds to a "cis-alpha" configuration [DeltaDelta/LambdaLambda(rac) diastereoisomer] supporting the possibility of some attractive pi-stacking interactions between the parallel py rings at each ruthenium atom. The ruthenium atom in the complex cations 3a and 4 exhibit a distorted octahedral coordination geometry composed of two nitrogen atoms of the bpy and the two thioether sulfur and two py/bzim nitrogen atoms of the pdto/bbdo ligand, which is actually folded around Ru(II) to give a "cis-alpha" isomer. The molecule of complex 5 contains a six-coordinated ruthenium atom chelated by pdto and dpa ligands in the expected distorted octahedral fashion. The (1)H and (13)C NMR spectral data of the complexes throw light on the nature of metal-ligand bonding and the conformations of the chelate rings, which indicates that the dithioether ligands maintain their tendency to fold themselves even in solution. The bis-mu-chloro dimers 1 and 2 show a spin-allowed but Laporte-forbidden t(2g)(6)((1)A(1g))--> t(2g)(5) e(g)(1)((1)T(1g), (1)T(2g)) d-d transition. They also display an intense Ru(II) dpi--> py/bzim (pi*) metal-to-ligand charge transfer (MLCT) transition. The mononuclear complexes 3-8 exhibit dpi-->pi* MLCT transitions in the range 340-450 nm. The binuclear complexes 1 and 2 exhibit a ligand field ((3)MC) luminescence even at room temperature, whereas the mononuclear complexes 3 and 4 show a ligand based radical anion ((3)MLCT) luminescence. The binuclear complexes 1 and 2 undergo two successive oxidation processes corresponding to successive Ru(II)/Ru(III) couples, affording a stable mixed-valence Ru(II)Ru(III) state (K(c): 1, 3.97 x 10(6); 2, 1.10 x 10(6)). The mononuclear complexes 3-7 exhibit only one while 8 shows two quasi-reversible metal-based oxidative processes. The coordinated 'soft' thioether raises the redox potentials significantly by stabilising the 'soft' Ru(II) oxidation state. One or two ligand-based reduction processes were also observed for the mononuclear complexes.  相似文献   

20.
The bridging ligand, 1,8-bis(2,2':6',2'-terpyrid-4'-yl)anthracene (btpyan) was synthesized by the Miyaura-Suzuki cross coupling reaction of anthracenyl-1,8-diboronic acid and 4'-triflyl-2,2':6'-2'-terpyridine in the presence of Pd(PPh(3))(4) (5 mol%) with 68% in yield. Three ruthenium-dioxolene dimers, [Ru(2)(OH)(2)(dioxolene)(2)(btpyan)](0) (dioxolene = 3,6-di-tert-butyl-1,2-benzosemiquinone ([1](0)), 3,5-dichloro-1,2-benzosemiquinone ([2](0)) and 4-nitro-1,2-benzosemiquinone ([3](0))) were prepared by the reaction of [Ru(2)Cl(6)(btpyan)](0) with the corresponding catechol. The electronic structure of [1](0) is approximated by [Ru(II)(2)(OH)(2)(sq)(2)(btpyan)](0) (sq = semiquinonato). On the other hand, the electronic states of [2](0) and [3](0) are close to [Ru(III)(2)(OH)(2) (cat)(2)(btpyan)](0) (cat = catecholato), indicating that a dioxolene having electron-withdrawing groups stabilizes [Ru(III)(2)(OH)(2)(cat)(2)(btpyan)](0) rather than [Ru(II)(2)(OH)(2)(sq)(2)(btpyan)](0) as resonance isomers. No sign was found of deprotonation of the hydroxo groups of [1](0), whereas [2](0) and [3](0) showed an acid-base equilibrium in treatments with t-BuOLi followed by HClO(4). Furthermore, controlled potential electrolysis of [1](0) deposited on an ITO (indium-tin oxide) electrode catalyzed the four-electron oxidation of H(2)O to evolve O(2) at potentials more positive than +1.6 V (vs. SCE) at pH 4.0. On the other hand, the electrolysis of [2](0) and [3](0) deposited on ITO electrodes did not show catalytic activity for water oxidation under similar conditions. Such a difference in the reactivity among [1](0), [2](0) and [3](0) is ascribed to the shift of the resonance equilibrium between [Ru(II)(2)(OH)(2)(sq)(2)(btpyan)](0) and [Ru(III)(2)(OH)(2)(cat)(2)(btpyan)](0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号