首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We construct analytical periodic wave and soliton solutions to the generalized nonautonomous nonlinear Schrdinger equation with time-and space-dependent distributed coefficients in harmonic and optical lattice potentials.We utilize the similarity transformation technique to obtain these solutions.Constraints for the dispersion coefficient,the nonlinearity,and the gain(loss) coefficient are presented at the same time.Various shapes of periodic wave and soliton solutions are studied analytically and physically.Stability analysis of the solutions is discussed numerically.  相似文献   

2.
In the paper, a generalized sub-equation method is presented to construct some exact analytical solutions of nonlinear partial differential equations. Making use of the method, we present rich exact analytical solutions of the onedimensional nonlinear Schrfdinger equation which describes the dynamics of solitons in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential. The solutions obtained include not only non-traveling wave and coefficient function's soliton solutions, but also Jacobi elliptic function solutions and Weierstra.ss elliptic function solutions. Some plots are given to demonstrate the properties of some exact solutions under the Feshbachmanaged nonlinear coefficient and the hyperbolic secant function coefficient.  相似文献   

3.
白志勇  邓冬梅  郭旗 《中国物理 B》2012,21(6):64218-064218
A novel class of optical breathers,called elegant Ince-Gaussian breathers,are presented in this paper.They are exact analytical solutions to Snyder and Mitchell’s mode in an elliptic coordinate system,and their transverse structures are described by Ince-polynomials with complex arguments and a Gaussian function.We provide convincing evidence for the correctness of the solutions and the existence of the breathers via comparing the analytical solutions with numerical simulation of the nonlocal nonlinear Schro¨dinger equation.  相似文献   

4.
The Dirac equations with vector and scalar potentials of the Coulomb types in two and three dimensions are solved using the supersymmetric quantum mechanics method. For the system of such potentials, the analytical expressions of the matrix dements for both position and momentum operators are obtained.  相似文献   

5.
Both the homotopy analysis method and Galerkin spectral method are applied to find the analytical solutions of the two-dimensional and time-independent Gross-Pitaevskii equation,a nonlinear Schrdinger equation used in describing the system of Bose-Einstein condensates trapped in a harmonic potential.The approximate analytical solutions are obtained successfully.Comparisons between the analytical solutions and the numerical solutions have been made.The results indicate that they are agreement very well with each other when the atomic interaction is not too strong.  相似文献   

6.
A Lattice Boltzmann Model and Simulation of KdV-Burgers Equation   总被引:2,自引:0,他引:2  
A lattice Boltzmann model of KdV-Burgers equation is derived by using the single-relaxation form of the lattice Boltzmann equation. With the present model, we simulate the traveling-wave solutions, the solitary-wave solutions, and the sock-wave solutions of KdV-Burgers equation, and calculate the decay factor and the wavelength of the sock-wave solution, which has exponential decay. The numerical results agree with the analytical solutions quite well.  相似文献   

7.
This paper studies the analytical and semi-analytic solutions of the generalized Calogero–Bogoyavlenskii–Schiff(CBS) equation. This model describes the(2 + 1)–dimensional interaction between Riemann-wave propagation along the y-axis and the x-axis wave. The extended simplest equation(ESE) method is applied to the model, and a variety of novel solitarywave solutions is given. These solitary-wave solutions prove the dynamic behavior of soliton waves in plasma. The accuracy of the obtained solution is verified using a variational iteration(VI) semi-analytical scheme. The analysis and the match between the constructed analytical solution and the semi-analytical solution are sketched using various diagrams to show the accuracy of the solution we obtained. The adopted scheme's performance shows the effectiveness of the method and its ability to be applied to various nonlinear evolution equations.  相似文献   

8.
In spherical polar coordinates, double ring-shaped oscillator potentials have supersymmetry and shape invariance for θ and r coordinates. Exact bound state solutions of Klein—Gordon equation with equal double ring-shaped oscillator scalar and vector potentials are obtained. The normalized angular wavefunction expressed in terms of Jacobi polynomials and the normalized radial wavefunction expressed in terms of the Laguerre polynomials are presented. Energy spectrum equations are obtained.  相似文献   

9.
Employing the technique of symmetry reduction of analytic method, we solve the Ginzburg-Landau equation with varying nonlinear, dispersion, gain coefficients, and gain dispersion which originates from the limiting effect of transition bandwidth in the realistic doped fibres. The parabolic asymptotic self-similar analytical solutions in gain medium of the normal GVD is found for the first time to our best knowledge. The evolution of pulse amplitude, strict linear phase chirp and effective temporal width are given with self-similarity results in longitudinal nonlinearity distribution and longitudinal gain fibre. These analytical solutions are in good agreement with the numerical simulations. Furthermore, we theoretically prove that pulse evolution has the characteristics of parabolic asymptotic self-similarity in doped ions dipole gain fibres.  相似文献   

10.
Using the F-expansion method we present analytical matter-wave solutions to Bose-Einstein condensates with two- and three-body interactions through the generalized three-dimensional Gross-Pitaevskii equation with time- dependent coefficients, for the periodically time-varying interactions and quadratic potential strength. Such solutions exist under certain conditions, and impose constraints on the functions describing potential strength, nonlinearities, and gain (loss). Various shapes of analytical matter-wave solutions which have important applications of physical interest are s~udied in details.  相似文献   

11.
刘通  成书杰  张锐  阮榕榕  姜厚勋 《中国物理 B》2022,31(2):27101-027101
We analytically and numerically study a 1 D tight-binding model with tunable incommensurate potentials.We utilize the self-dual relation to obtain the critical energy,namely,the mobility edge.Interestingly,we analytically demonstrate that this critical energy is a constant independent of strength of potentials.Then we numerically verify the analytical results by analyzing the spatial distributions of wave functions,the inverse participation rate and the multifractal theory.All numerical results are in excellent agreement with the analytical results.Finally,we give a brief discussion on the possible experimental observation of the invariable mobility edge in the system of ultracold atoms in optical lattices.  相似文献   

12.
We obtain exact spatial localized mode solutions of a(2+1)-dimensional nonlinear Schr¨odinger equation with constant diffraction and cubic-quintic nonlinearity in PT-symmetric potential, and study the linear stability of these solutions. Based on these results, we further derive exact spatial localized mode solutions in a cubic-quintic medium with harmonic and PT-symmetric potentials. Moreover, the dynamical behaviors of spatial localized modes in the exponential diffraction decreasing waveguide and the periodic distributed amplification system are investigated.  相似文献   

13.
吴开谡 《中国物理 B》2009,18(9):4049-4057
In this paper, the network equation for the slow neutron capture process (s-process) of heavy element nucleosynthesis is investigated. Dividing the s-process network reaction chains into two standard forms and using the technique of matrix decomposition, a group of analytical solutions for the network equation are obtained. With the analytical solutions, a calculation for heavy element abundance of the solar system is carried out and the results are in good agreement with the astrophysical measurements.  相似文献   

14.
王行翔 《中国物理快报》2003,20(10):1674-1677
Some locally rotationally symmetric Bianchi type=I cosmological solutions for a cloud string with bulk viscosity are presented. In the first case, an equation of state ρ = κλ and the relation between metric potentials R = AS^m are considered, and the solution represents shearing non-rotating model with the bulk viscosity ζ∝ρ^1/2, where ρ is the rest energy density of the cloud of strings with particles attached to them, λ is the tension density of the cloud of strings, ζ is the coefficient of the bulk viscosity, R and S are only the functions of time t, while A and κ are constant. In the second case, the constant coefficient of bulk viscosity is considered.  相似文献   

15.
The nonlocal symmetry of the Sawada–Kotera(SK) equation is constructed with the known Lax pair. By introducing suitable and simple auxiliary variables, the nonlocal symmetry is localized and the finite transformation and some new solutions are obtained further. On the other hand, the group invariant solutions of the SK equation are constructed with the classic Lie group method.In particular, by a Galileo transformation some analytical soliton-cnoidal interaction solutions of a asymptotically integrable equation are discussed in graphical ways.  相似文献   

16.
For MHD flows in a rectangular duct with unsymmetrical walls, two analytical solutions have been obtained by solving the governing equations in the liquid and in the walls coupled with the boundary conditions at fluid-wall interface. One solution of 'Case I' is for MHD flows in a duct with side walls insulated and unsymmetrical Hartmann walls of arbitrary conductivity, and another one of 'Case II' is for the flows with unsymmetrical side walls of arbitrary conductivity and Hartmann walls perfectly conductive.The walls are unsymmetrical with either the conductivity or the thickness different from each other. The solutions, which include three parts, well reveal the wall effects on MHD. The first part represents the contribution from insulated walls, the second part represents the contribution from the conductivity of the walls and the third part represents the contribution from the unsymmetrical walls. The solution is reduced to the Hunt's analytical solutions when the walls are symmetrical and thin enough. With wall thickness runs from 0 to∞, there exist many solutions for a fixed conductance ratio. The unsymmetrical walls have great effects on velocity distribution. Unsymmetrical jets may form with a stronger one near the low conductive wall, which may introduce stronger MHD instability. The pressure gradient distributions as a function of Hartmann number are given, in which the wall effects on the distributions are well illustrated.  相似文献   

17.
袁文  殷澄  王贤平  曹庄琪 《中国物理 B》2010,19(9):93402-093402
This paper studies quantum reflection with recent research on reflection coefficient. Based on the analytical transfer matrix method, a novel explanation for this phenomenon is proposed that quantum reflection is the reflection of subwaves, which originate inherently from the inhomogeneity of the fields and is always neglected in the semiclassical regime. Comparison with exact formula and the numerical calculations for different potentials has confirmed the reliability and the validity of the proposed theory.  相似文献   

18.
We report on the localized spatial soliton excitations in the multidimensional nonlinear Schrdinger equation with radially variable nonlinearity coefficient and an external potential.By using Hirota's binary differential operators,we determine a variety of external potentials and nonlinearity coefficients that can support nonlinear localized solutions of different but desired forms.For some specific external potentials and nonlinearity coefficients,we discuss features of the corresponding(2+1)-dimensional multisolitonic solutions,including ring solitons,lump solitons,and soliton clusters.  相似文献   

19.
Periodic wave solutions and solitary wave solutions to a generalized (3+1)-dimensional Gross-Pitaevskii equation with time-modulated dispersion, nonlinearity, and potential are derived in terms of an improved homogeneous balance principle and a mapping approach. These exact solutions exist under certain conditions via imposing suitable constraints on the functions describing dispersion, nonlinearity, and potential. The dynamics of the derived solutions can be manipulated by prescribing specific time-modulated dispersions, nonlinearities, and potentials. The results show that the periodic waves and solitary waves with novel behaviors are similar to the similaritons reported in other nonlinear systems.  相似文献   

20.
Approximate analytical bound-state solutions of the Dirac particle in the fields of attractive and repulsive Rosen- Morse (RM) potentials including the Coulomb-like tensor (CLT) potential are obtained for arbitrary spin-orbit quantum number κ. The Pekeris approximation is used to deal with the spin-orbit coupling terms κ(κ± 1)r 2 . In the presence of exact spin and pseudospin (p-spin) symmetries, the energy eigenvalues and the corresponding normalized two-component wave functions are found by using the parametric generalization of the Nikiforov-Uvarov (NU) method. The numerical results show that the CLT interaction removes degeneracies between the spin and p-spin state doublets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号