首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
何良明 《中国物理 B》2013,22(1):17201-017201
The interlayer transport of electron in bilayer graphene influenced by phonon in the presence of biased potential is investigated using the tight-binding approach. The in-plane optical mode E2g and out-of-plane optical mode B1g associated with the applied biased potential are considered to compute and discuss the interlayer transport probability of an electron initially localized on the bottom layer at the Dirac point in the Brillouin zone. Without the biased potential, the interlayer transport probability is equal to 0.5 regardless of the phonon displacement except for a few special cases. Applying a biased potential to the layers, we find that in different phonon mode the function of the transport probability with respect to applied biased potential and phonon displacement is complex and various, but on the whole the transport probability decreases with the increase in the absolute value of the applied biased potential. These phenomena are discussed in detail in this paper.  相似文献   

2.
The recent advances in graphene isolation and synthesis methods have enabled potential applications of graphene in nanoelectronics and thermal management, and have offered a unique opportunity for investigation of phonon transport in two-dimensional materials. In this review, current understanding of phonon transport in graphene is discussed along with associated experimental and theoretical investigation techniques. Several theories and experiments have suggested that the absence of interlayer phonon scattering in suspended monolayer graphene can result in higher intrinsic basal plane thermal conductivity than that for graphite. However, accurate experimental thermal conductivity data of clean suspended graphene at different temperatures are still lacking. It is now known that contact of graphene with an amorphous solid or organic matrix can suppress phonon transport in graphene, although further efforts are needed to better quantify the relative roles of interface roughness scattering and phonon leakage across the interface and to examine the effects of other support materials. Moreover, opportunities remain to verify competing theories regarding mode specific scattering mechanisms and contributions to the total thermal conductivity of suspended and supported graphene, especially regarding the contribution from the flexural phonons. Several measurements have yielded consistent interface thermal conductance values between graphene and different dielectrics and metals. A challenge has remained in establishing a comprehensive theoretical model of coupled phonon and electron transport across the highly anisotropic and dissimilar interface.  相似文献   

3.
利用系综MonteCarlo法研究了2H ,4H和6HSiC的电子输运特性.在模拟中考虑了对其输运过程有着重要影响的声学声子形变势散射、极化光学声子散射、谷间声子散射、电离杂质散射以及中性杂质散射.通过计算,获得了低场下这几种不同SiC多型电子迁移率同温度的关系,并以4H SiC为例,重点分析了中性杂质散射的影响.最后对高场下电子漂移速度的稳态和瞬态变化规律进行了研究.将模拟结果同已有的实验数据进行了比较,发现当阶跃电场强度为10×106V·cm-1时,4H Sic电子横向瞬态速度峰值接近33×107cm·s-1,6H Sic接近30×107cm·s-1.  相似文献   

4.
Starting from a model of an indirect optical semiconductor with two bands, the electron states are calculated in the presence of an additional periodic one-dimensional potential (superlattice) in the semiconductor material. These states are used to determine the transition probability connected with the absorption of a photon. This transition corresponds to an optical direct transition — no phonon takes part in this process. The optical direct and optical indirect transitions are compared. For optical frequencies near the band gap one expects only direct transitions, whereby the optical indirect transitions may be neglected.  相似文献   

5.
《Current Applied Physics》2020,20(4):572-581
We explore the effects of interlayer vacancy defects on the vibrational properties of Bernal (AB) stacking bilayer armchair graphene nanoribbons (BiAGNRs) using the forced vibrational method. It is observed that the Raman active longitudinal optical (LO) phonon of BiAGNR is shifted downward with the decrease of the ribbon width and an increase of the vacancy concentrations. We find that vacancies induce some new peaks in the low frequency regime of the phonon density of states. Our calculated typical mode patterns elucidate that the localized transverse optical phonon at the K-point is shifted towards the defect sites from the edges with increased vacancy concentrations. In addition, the impact of defect induced phonon modes on the specific heat capacity and thermal conductivity of BiAGNRs are discussed. These results present a new way of understanding the heat dissipation phenomena of graphene-based high-performance nanodevices and to clarify the Raman and the experiments related to the phonon properties.  相似文献   

6.
多原子半无限晶体中表面极化子的内部激发态   总被引:1,自引:1,他引:0  
任保友  肖景林 《发光学报》2007,28(5):662-666
研究多原子半无限晶体中电子与表面光学(SO)声子耦合强,而与体纵光学(LO)声子耦合弱的极化子的激发态性质.采用线性组合算符和幺正变换方法导出与SO声子耦合强而与LO声子耦合弱情形下极化子的基态能量、第一内部激发态能量和激发能量.结果表明,多原子半无限晶体中与SO声子耦合强,而与LO声子耦合弱的极化子的基态能量、第一内部激发态能量不仅包含不同支LO声子和不同支SO声子与电子耦合的能量,而且也包含不同支SO声子之间相互作用贡献的附加能量.激发能量与体纵光学声子无关.  相似文献   

7.
弱耦合多原子半无限晶体中的表面极化子的有效势   总被引:3,自引:0,他引:3  
本文研究弱耦合多原子半无限晶体中表面极化子的性质。采用线性组合算符和幺正变换导出表面极化子的的有效势。  相似文献   

8.
We demonstrate the key role of phonon occupation in limiting the high-field ballistic transport in metallic carbon nanotubes. In particular, we provide a simple analytic formula for the electron transport scattering length, which we validate by accurate first principles calculations on (6, 6) and (11, 11) nanotubes. The comparison of our results with the scattering lengths fitted from experimental I-V curves indicates the presence of a nonequilibrium optical phonon heating induced by electron transport. We predict an effective temperature for optical phonons of thousands Kelvin.  相似文献   

9.
We investigated the phonon scattering effects on the transport properties of carbon nanotube devices with micron-order lengths at room temperature, using the time-dependent wave-packet approach based on the Kubo formula within a tight-binding approximation. We studied the scattering effects of both the longitudinal acoustic and the optical phonons on the transport properties. The conductance of semiconducting nanotubes is decreased by the acoustic phonon, instead of the optical phonon. Furthermore, we clarified how the electron mobilities of the devices are affected by the acoustic phonon.  相似文献   

10.
Coherent spin dynamics in the THz domain coupled to a coherent phonon is observed in the time-resolved second harmonic response of the Gd(0001) ferromagnetic metal surface. An LO phonon of 2.9 THz is excited by a transient charge displacement at the surface caused by resonant absorption of a fs laser pulse in the exchange-split surface state. This lattice vibration modulates the interlayer distance inducing a coherent variation of the exchange interaction between spins in adjacent layers. The resulting magnetization dynamics is considered as optical magnon wave packets coupled to the phonon.  相似文献   

11.
范航  何冠松  杨志剑  聂福德  陈鹏万 《物理学报》2019,68(10):106201-106201
高聚物粘结炸药(PBX)的热力学性质是用于炸药结构响应、安全性评估、数值模拟分析等的重要参数.由于PBX结构的多尺度特性,完全采取实验方法精细表征这些参数存在巨大的挑战.本文运用第一性原理和分子动力学计算的方法,系统研究了三氨基三硝基苯(TATB)基高聚物粘结炸药的热力学参数和界面热传导性质.利用散射失配模型研究了TATB与聚偏二氟乙烯(PVDF)界面的热传导过程,发现热导率随温度升高而上升,并且在高温情况下接近于定值.基于分子动力学获得的TATB热导率并结合界面热导率,分析了PBX炸药的热导与颗粒尺寸的关系,当颗粒尺寸大于100 nm时,界面热阻对于PBX热导率的影响有限.  相似文献   

12.
We show that the local temperature dependence of thermalized electron and phonon populations along metallic carbon nanotubes is the main reason behind the nonlinear transport characteristics in the high bias regime. Our model is based on the solution of the Boltzmann transport equation considering both optical and zone boundary phonon emission as well as absorption by charge carriers. It also assumes a local temperature along the nanotube, determined self-consistently with the heat transport equation. By using realistic transport parameters, our results not only reproduce experimental data for electronic transport but also provide a coherent interpretation of thermal breakdown under electric stress. In particular, electron and phonon thermalization prohibits ballistic transport in short nanotubes.  相似文献   

13.
An electron-phonon cavity consisting of a quantum dot embedded in a freestanding GaAs/AlGaAs membrane is characterized using Coulomb blockade measurements at low temperatures. We find a complete suppression of single electron tunneling around zero bias leading to the formation of an energy gap in the transport spectrum. The observed effect is induced by the excitation of a localized phonon mode confined in the cavity. This phonon blockade of transport is lifted at discrete magnetic fields where higher electronic states with nonzero angular momentum are brought into resonance with the phonon energy.  相似文献   

14.
We study the mechanism of van der Waals(vdW)interactions on phonon transport in atomic scale,which would boost developments in heat management and energy conversion.Commonly,the vdW interactions are regarded as a hindrance in phonon transport.Here we propose that the vdW confinement can enhance phonon transport.Through molecular dynamics simulations,it is realized that the vdW confinement is able to make more than two-fold enhancement on thermal conductivity of both polyethylene single chain and graphene nanoribbon.The quantitative analyses of morphology,local vdW potential energy and dynamical properties are carried out to reveal the underlying physical mechanism.It is found that the confined vdW potential barriers reduce the atomic thermal displacement magnitudes,leading to less phonon scattering and facilitating thermal transport.Our study offers a new strategy to modulate the phonon transport.  相似文献   

15.
We have carried out a theoretical calculation of the differential cross section for the electron Raman scattering process associated with the surface optical phonon modes in a semiconductor quantum disc.electron states are considered to be confined within a quantum disc with infinite potential barriers.The optical phonon modes we have adopted are the slab phonon modes by taking into consideration the Frohlich interaction between an electron and a phonon.The selection rules for the Raman process are given.Numerical results and a discussion are also presented for various radii and thicknesses of the disc,and different incident radiation energies.  相似文献   

16.
Using ensemble Monte Carlo simulation technique, we have calculated the transport properties of InN such as the drift velocity, the drift mobility, the average electron, energy relaxation times and momentum relaxation times at high electric field. The scattering mechanisms included scattering mechanisms are polar optical phonon, ionized impurity, acoustic phonon and intervalley phonon. It is found that the maximum peak velocity only occurs when the electric field is increased to a value above a certain critical field. This critical field is strongly dependent on InN parameters. The steady-state transport parameters are in fair agreement with other recent calculations.  相似文献   

17.
Based on a semiclassical Boltzmann transport equation in random phase approximation, we develop a theoretical model to understand low-field carrier transport in biased bilayer graphene, which takes into account the charged impurity scattering, acoustic phonon scattering, and surface polar phonon scattering as three main scattering mechanisms. The surface polar optical phonon scattering of carriers in supported bilayer graphene is thoroughly studied using the Rode iteration method. By considering the metal–BLG contact resistance as the only one free fitting parameter, we find that the carrier density dependence of the calculated total conductivity agrees well with that observed in experiment under different temperatures. The conductivity results also suggest that in high carrier density range, the metal–BLG contact resistance can be a significant factor in determining the BLG conductivity at low temperature, and both acoustic phonon scattering and surface polar phonon scattering play important roles at higher temperature, especially for BLG samples with a low doping concentration, which can compete with charged impurity scattering.  相似文献   

18.
Under the dielectric continuum model and Loudon's uniaxial crystal model, the polar optical phonon modes in a wurtzite multi-shell cylindrical heterostructure are analyzed and discussed. The analytical electrostatic potential functions are presented for all the five types of polar optical phonon modes including the interface optical (IO) modes, the propagating (PR) modes, the quasi-confined (QC) modes, the half-space-like (HSL) modes and the exactly confined (EC) modes. By adopting a transfer matrix method, the free IO and PR phonon fields and corresponding Fröhlich electron -IO and -PR interaction Hamiltonians are obtained via the method of electrostatic potential expansion. The analytical formulas are universal and can be applied to single, double and some complex cylindrical wurtzite quantum systems.  相似文献   

19.
Phonon effect on hydrogenic impurity states in cylindrical quantum wires of polar semiconductors under an applied electric field is studied theoretically by a variational approach. The binding energies are calculated as functions of the transverse dimension of the quantum wire, and the donor-impurity position under different fields. The electron–phonon interaction is considered in the calculations by taking both the confined bulk longitudinal optical phonons and interface optical phonons as well as the impurity-ion–phonon coupling. The numerical results for the CdTe and GaAs quantum wires are given and discussed as examples. It is confirmed that the electron–phonon interaction obviously reduces both the binding energy and the Stark energy-shift of the bound polarons in quantum wires.  相似文献   

20.
Hot electrons cooling by phonons in GaAs/AlAs cylindrical quantum wire (CQW), under the influence of an intense electromagnetic wave (EMW), is studied theoretically. Analytic expression for the electron cooling power (CP) is derived from the quantum transport equation for phonons, using the Hamiltonian of interacting electron–optical phonon system. Both photon absorption and emission processes are considered. Numerical results show that the CP reaches maximum when the energy difference between electronic subbands equals the energy of an optical phonon plus the photon energy. Under the influence of the EMW, the negative CP is observed showing that electrons gain energy from phonon and photon instead of losing their energy. Also, the CP increases with increasing the EMW amplitude. Our results theoretically clarify the mechanism of the electron cooling process by phonons in the GaAs/AlAs CQW under the EMW, which is of significance for designing and fabricating high-speed nanoelectronic devices based on this material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号