首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on a phenomenological Landau-Devonshire theory, the effect of misfit strain on the electrocaloric effect in epitaxial SrTiO3 thin films is investigated. Theoretical analysis indicates that both the electrocaloric coefficient and the adiabatic temperature change strongly depend on the misfit strain. Moreover, the maximum of electrocaloric coefficient almost does not change with increasing the compressive or tensile misfit strain. However, the enhancement of misfit strain enlarges both the adiabatic temperature change and the temperature at which it is maximized. Most importantly, the largest room-temperature electrocaloric effect can be attained at a critical misfit strain. Therefore, it may open more opportunities for practical application in refrigeration devices.  相似文献   

2.
邱建华  丁建宁  袁宁一  王秀琴 《中国物理 B》2012,21(9):97701-097701
The effect of misfit strain on the electrocaloric effect in polydomain epitaxial BaTiO 3 thin films at room temperature is investigated using the Ginzburg-Landau-Devonshire thermodynamic theory. Numerical calculations indicate that the misfit strain has a large impact on the ferroelectric polarization states and the electrocaloric effect. Most importantly, the electrocaloric effect in the polydomain ca 1 /ca 2 /ca 1 /ca 2 phase is much larger than that in the monodomain c phase and the other polydomain phases. Consequently, a large electrocaloric effect can be obtained by carefully controlling the misfit strain, which may provide potential applications in refrigeration devices.  相似文献   

3.
Based on the phenomenological Landau-Devonshire theory, we investigate the effect of misfit strain on the electrocaloric effect of P(VDF-TrFE) copolymer thin films. Theoretical analysis indicates that the compressive misfit strain reduces the working temperature to a great extent where the electrocaloric effect is maximized, which is different from the result of the conventional ferroelectric thin films, such as BaTiO3. Although the compressive or tensile misfit strain does not change the maximum of the electrocaloric coefficient, the compressive misfit strain decreases the maximum of the adiabatic temperature change and the tensile misfit strain results in the opposite effect. Consequently, control of the misfit strain provides potential means to vary the working temperature for use in cooling systems.  相似文献   

4.
王歆钰  储瑞江  魏胜男  董正超  仲崇贵  曹海霞 《物理学报》2015,64(11):117701-117701
基于Laudau-Devonshire的热动力学模型, 计算了EuTiO3铁电薄膜材料的电热效应. 结果显示在外加应力的调控下, 电极化、电热系数以及绝热温差都会随之变化. 外加垂直于表面的张应力加大, 薄膜的相变温度升高, 绝热温差增加, 最大绝热温差所对应的工作温度向高温区移动. 对于二维平面失配应变um =-0.005的薄膜, 当外加张应力σ3 = 5 GPa时, 其最大电热系数为1.75×10-3 C/m2·K, 电场变化200 MV/m 时室温下绝热温差ΔT 的最大值可达到14 K 以上, 绝热温差ΔT ≥13 K 的工作温区超过120 K, 表明可以通过调控外部应力来获取室温时较大的绝热温差. 此结果预示着铁电EuTiO3 薄膜在室温固态制冷方面可能具有较好的应用前景.  相似文献   

5.
A method based on first-principles calculations was used to construct temperature versus misfit strain phase diagrams for epitaxial (BaxSr1−x)TiO3 ultrathin films over the entire composition range from x=0 to x=1. The predicated phase diagrams show “topologies” that are similar to those calculated by Shirokov et al. (Phy. Rev. B. 79 (2009) 144118), but with quantitative differences that are examined and explained. The dependence of the dielectric permittivity on the misfit strain and the film composition at room temperature are also investigated and compared with available theoretical predications and experimental measurements.  相似文献   

6.
J.H. Qiu  Q. Jiang 《Physics letters. A》2008,372(48):7191-7195
A thermodynamic analysis is employed to investigate the intrinsic electrocaloric effect of Pb(Zr1 − xTix)O3 solid solution system under the different electric field. Theoretical analysis indicates that Pb(Zr1 − xTix)O3 system has the giant electrocaloric coefficient and the large adiabatic temperature change near its ferroelectric Curie temperature. The applied electric field decreases not only the electrocaloric coefficient but also its temperature dependence. Furthermore, it increases the adiabatic temperature change as well as its dependence of temperature. The temperature corresponding to the maximum of electrocaloric coefficient and adiabatic temperature change increases with the enhancement of electric field because of its first-order phase transition between ferroelectric phase and paraelectric phase.  相似文献   

7.
Ge self-assembled quantum dots (SAQDs) grown on a relaxed Si0.75Ge0.25 buffer layer were observed using an atomic force microscopy (AFM) and a transmission electron microscopy (TEM). The effect of buried misfit dislocations on the formation and the distribution of Ge SAQDs was extensively investigated. The Burgers vector determination of each buried dislocation using the g·b = 0 invisibility criterion with plane-view TEM micrographs shows that Ge SAQDs grow at specific positions related to the Burgers vectors of buried dislocations. The measurement of the lateral distance between a SAQD and the corresponding misfit dislocation with plane-view and cross-sectional TEM images reveals that SAQDs form at the intersections of the top surface with the slip planes of misfit dislocations. The stress field on the top surface due to misfit dislocations is computed, and it is found that the strain energy of the misfit dislocations provides the preferential formation sites for Ge SAQDs nucleation.  相似文献   

8.
A phenomenological thermodynamic theory is applied to investigate the effect of misfit strain and electric field on the electrocaloric effect of P(VDF-TrFE)/SrTiO 3 bilayer thin films.Theoretical results indicate that the low electric field results in the decrease of the average polarization with the increase of the relative thickness of SrTiO 3 layer,and the high electric field has an opposite effect on it.Moreover,the electrocaloric effect strongly depends on the electric field.The low electric field and the small field change can lead to a maximum of the electrocaloric effect,meanwhile the high electric field or the large field change results in the opposite trend.  相似文献   

9.
The spin-polarised transport in ferromagnetic polycrystalline La0.7(Sr,Ca)0.3MnO3 films on piezoelectric substrate has been investigated. The systematic study involved in finding the effect of in-situ strain on extrinsic electrical transport of various thick polycrystalline La0.7(Sr,Ca)0.3MnO3 thin films. The in-situ strain in the manganite polycrystalline thin film is achieved by applying an electric field to the piezoelectric substrate 0.72 Pb(Mg1/3Nb2/3)O3-0.28 PbTiO3 (PMN-PT). A reversible strain of about 0.11% is acquired with an application of 10 kV/cm to the piezoelectric substrate. A typical drop in resistance at low magnetic fields has been found in all the polycrystalline manganite films. The effect of reversible strain versus the resultant strain gauges was discussed in all the polycrystalline films. At low temperatures, the effect of strain on low-field magnetoresistance and high-field magnetoresistance was found to be negligible. Further, the results are compared with the transport in manganite films deposited on step edge junctions.  相似文献   

10.
Vacancy-induced magnetism in perovskite SrTiO3 is investigated by ab initio calculations and magnetic measurements. The calculations of the generalized gradient approximation (GGA), the local density approximation (LDA) and the local density approximation with on-site effect U (LDA+U) methods show that stoichiometric SrTiO3 is nonmagnetic. The GGA calculated results indicate that Ti or O vacancy could induce magnetism rather than Sr vacancy. The LDA and LDA+U calculations show that the Ti vacancy could induce magnetism, while Sr and O vacancies couldn't. The experimental results confirm that SrTiO3 nanocrystalline powders exhibit room-temperature ferromagnetism (FM) and the magnetic moment results from cation vacancies.  相似文献   

11.
Fe-doped (Ba1−xSrx)TiO3 ceramics were prepared by solid-state reaction, and ferromagnetism was realized at room temperature. The microstructure and magnetism were modified by the Sr concentration control (0≤x≤75 at%) at a fixed Fe concentration, and the relevant magnetic exchange mechanism was discussed. All the samples are shown to have a single perovskite structure. When increasing the Sr concentration, the phase structure is transformed from a hexagonal perovskite into a cubic perovskite, with a monotonic decrease in lattice parameters induced by ionic size effect. The room-temperature ferromagnetism is expected to originate from the super-exchange interactions between Fe3+ on pentahedral and octahedral Ti sites mediated by the O2− ions. The increase in Sr addition modifies two main influencing factors in magnetic properties: the ratio of pentahedral to octahedral Fe3+ and the concentration of oxygen vacancies, leading to a gradually enhanced saturation magnetization. The highest value, obtained for Fe-doped (Ba0.25Sr0.75)TiO3, is an order of magnitude higher than that of the Fe-doped BaTiO3 system with similar Fe concentration and preparation conditions, which may indicate (Ba1−xSrx)TiO3 as a more suitable matrix material for multiferroic research.  相似文献   

12.
C. Zhu 《Physics letters. A》2007,372(1):81-86
Using Landau-Devonshire (LD)-type phenomenological model, we investigate the phase diagrams and dielectric behaviors of single-domain single-crystal Ba0.6Sr0.4TiO3 films deposited on orthorhombic substrates. An anisotropic strain factor is introduced to quantitatively calculate the effects of anisotropic in-plane misfit strains. Investigation indicates that anisotropic strains play a crucial role on formation of stable ferroelectric phases and dielectric properties. The anisotropic strains induce tetragonal phases which only contain one in-plane spontaneous polarization component. These phases do not exist in BST films of the same composition under isotropic strains. Moreover, permittivity and tunability of films can reach to maximum when the corresponding spontaneous polarization component disappears at the boundaries of structural phase transition.  相似文献   

13.
We have studied the dielectric, elastic piezoelectric properties, and the electrocaloric effect of a single crystal of RbH2PO4. If RbDP undergoes a first order transition, the temperature range must be small and a small field can change it to a second order one.  相似文献   

14.
A phenomenological thermodynamic model is presented to investigate the effects of the orientation and the relative thickness of SrTiO3 layer on the electrocaloric effect in PbTiO3/SrTiO3 multilayers. Theoretical calculations show that complete polarization suppression and a large electrocaloric effect take place at the critical relative thickness of SrTiO3 layer of 46%, 33%, and 30% for the (001), (110), and (111) oriented PbTiO3/SrTiO3 multilayers respectively, not occuring at the critical relative thickness of 63%, 50%, and 46% reported by Wu et al. [H.P. Wu, A.P. Liu, L.Z. Wu, S.Y. Du, Appl. Phys. Lett. 93 (2008) 242909]. Moreover, (111) oriented multilayers have the largest electrocaloric effect which is different from that of BaTiO3/SrTiO3 multilayers where (110) oriented multilayers have the largest electrocaloric effect. Consequently, the electrocaloric effect of PbTiO3/SrTiO3 multilayers can be adjusted by the orientation and the relative thickness of SrTiO3 layer.  相似文献   

15.
The dynamics of change in temperature at the edges of a layered structure consisting of one or more electrocaloric and heat-conducting elements in response to pulses of a periodic electric field has been studied with the use of the finite-element method. The possibility of using ceramic materials and (Ba,Sr)TiO3 films as electrocaloric and heat-conducting elements of linear and radial cooling structures is considered. The difference between the temperatures at the center and periphery of the radial film microstructure with two interdigital circular electrode lines is 2.5 K. An increase in the number of lines and the electric field frequency leads to an increase of the thermal effect.  相似文献   

16.
Based on the phenomenological Landau-Devonshire theory, we investigate the film thickness dependence of ferroelectric and electro-optic properties of epitaxial BaTiO3 thin films grown on SrTiO3 and MgO substrates. By using the effective substrate lattice parameter concept, the film thickness dependence of misfit strain is incorporated into the theory. Therefore, the film thickness dependence of ferroelectric and electro-optic properties in epitaxial BaTiO3 thin films can be explained. Moreover, a large quadratic electro-optic effect was obtained in the BaTiO3 thin films, which is in good agreement with the experimental result of BaTiO3 thin films on the MgO substrate.  相似文献   

17.
Layered misfit cobaltite Bi2Ca2.4Co2Oy has been synthesized by a sol-gel method. This compound exhibits large thermoelectric (TE) power (S300 K∼170 μV K−1), low resistivity (ρ300 K∼42 mΩ cm) and relatively small thermal conductivity (κ300 K∼2.8 W K−1 m−1) at room temperature. Furthermore, the resistivity of this compound displays a metallic behavior above T?∼150 K with a semiconducting behavior below this temperature. This abnormal behavior in resistivity is analogous to those observed in Sr and Ba based misfit cobaltites. The observed features of the TE have been discussed based on the narrow band model.  相似文献   

18.
In this work, lead-free Ba0.85Ca0.075Sr0.075Ti0.90Zr0.10O3 (BCSZT) ceramics were fabricated by conventional solid-state reaction route. The effect of sintering temperature on electrocaloric properties of BCSZT ceramics was studied in detail. Samples were sintered at different temperatures (1400–1500?°C) and dwell time (3–6 h). An enhanced electrocaloric behavior is demonstrated for BCSTZ ceramics at 1475?°C/4 h. Electrocaloric cooling of ~1.5 ± 0.1 K was found for BCSZT sample. This cooling was found in wide temperature range of 303–363 K. Further, the selected composition was observed to be among the better performing materials reported for electrocaloric refrigeration.  相似文献   

19.
Visible optical properties of two crystalline fibers (KY3F10 and LiLuF4) doped with Dy3+ have been investigated. In particular, the room-temperature absorption spectra have been analyzed using the Judd–Ofelt theory and the intensity parameters have been obtained. A criterion suitable for determining the proper choice of the dopant composition to tailor the luminescence properties of the crystals is proposed.  相似文献   

20.
The α-Fe2O3/α-Al2O3 heterostructure interfaces have been studied using transmission electron microscopy (TEM). The interface exhibited coherent regions separated by equally spaced misfit dislocations. The misfit dislocations were demonstrated to be edge dislocations with dislocation spacing of ∼4 nm. The strain fields around the misfit dislocation core were mapped using a combination of geometric phase analysis and high-resolution transmission electron microscopy images. The strain measurement results were compared with the Peierls–Nabarro dislocation model and the Foreman dislocation model. These comparisons show that the Foreman model (a = 2) is the most appropriate theoretical model to describe the strain fields of the dislocation core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号