首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The tendency to structural instability and the nature of the magnetic ordering are investigated in all the cubic rare-earth-cadmium equiatomic compounds from measurements of resistivity and magnetic susceptibility. The CsCl-type structure is stable at room temperature in all the compounds. However, LaCd exhibits a lattice change at 61 K, while CeCd and PrCd undergo two transitions at 107 and 216 K, and 125 and 190 K, respectively. The low-temperature phases are unknown, but seem to have a symmetry lower than tetragonal. Other compounds are cubic at least in their paramagnetic phase. In connection with the change in the lattice symmetry, a change of the magnetic ordering is observed from ferromagnetism towards antiferromagnetism. Among the heavy rare-earth compounds, cubic thus ferromagnetic, DyCd plays a peculiar role since it undergoes a structural transition in its ordered range, the magnetoelastically stressed lattice becoming unstable again. The strength of bilinear interactions and the occurrence of quadrupolar pair coupling are then discussed.  相似文献   

2.
Results are presented of single crystal structural, thermodynamic, and reflectivity measurements of the double-perovskite Ba2NaOsO6. These characterize the material as a 5d1 ferromagnetic Mott insulator with an ordered moment of approximately 0.2microB per formula unit and TC=6.8(3) K. The magnetic entropy associated with this phase transition is close to Rln2, indicating that the quartet ground state anticipated from consideration of the crystal structure is split, consistent with a scenario in which the ferromagnetism is associated with orbital ordering.  相似文献   

3.
The crystal structure and Raman spectra of Pr0.7Ca0.3MnO3 manganite at high pressures of up to 30 GPa and the magnetic structure at pressures of up to 1 GPa have been studied. A structural phase transition from the orthorhombic phase of the Pnma symmetry to the high-pressure orthorhombic phase of the Imma symmetry has been observed at P ∼ 15 GPa and room temperature. Anomalies of the pressure dependences of the bending and stretching vibrational modes have been observed in the region of the phase transition. A magnetic phase transition from the initial ferromagnetic ground state (T C = 120 K) to the A-type antiferromagnetic state (T N = 140 K) takes place at a relatively low pressure of P = 1 GPa in the low-temperature region. The structural mechanisms of the change of the character of the magnetic ordering have been discussed.  相似文献   

4.
We have investigated the structural, magnetic and transport properties of La1−xBixMnO3 samples. As the Bi content increases, a structural transition from rhombohedral to pseudocubic and a magnetic phase transition from ferromagnetic ordering to cluster glass are identified. Metal–insulator (MI) transitions and large magnetoresistance (MR) effects are observed at low Bi doping levels, while insulating behavior of resistivity is found in the whole measured temperature range at high-doping levels. Two distinct ferromagnetic insulating (FI) states are found at low temperatures in this system. One can be suppressed and the other can be enhanced by applying magnetic fields. Possible reasons for the observed structural, magnetic phase transitions and changes of resistivity behavior with Bi doping are discussed.  相似文献   

5.
The crystal and magnetic structures of the Pr0.5Sr0.5CoO3 metallic ferromagnet have been studied using neutron diffraction and synchrotron radiation. Successive structural transitions with the reduction of the crystal symmetry from cubic (space group Pm3m) to rhombohedral (\(R\bar 3c\), ~800 K), orthorhombic (Imma, ~300 K) and, then, to triclinic at ~120 K are detected during cooling from 1120 K. The transition from the orthorhombic system to a phase with a lower symmetry is characterized by a sharp change in the anisotropy of the unit cell, which indicates the partial ordering of the e g orbitals of cobalt. The accompanying change in the interatomic distances and valence angles give rise to an anomaly in the temperature dependence of the magnetic susceptibility at T ≈ 120 K. The ordered magnetic moment μCo ≈ 2μB corresponds to the assumption of the intermediate spin state of Co3+ ions and the mixture of low- and intermediate-spin states of Co4+ ions.  相似文献   

6.
郭三栋 《中国物理 B》2016,25(5):57104-057104
We investigate magnetic ordering and electronic structures of Cr_2MoO_6under hydrostatic pressure. To overcome the band gap problem, the modified Becke and Johnson exchange potential is used to investigate the electronic structures of Cr_2MoO_6. The insulating nature at the experimental crystal structure is produced, with a band gap of 1.04 eV, and the magnetic moment of the Cr atom is 2.50 μB, compared to an experimental value of about 2.47 μB. The calculated results show that an antiferromagnetic inter-bilayer coupling–ferromagnetic intra-bilayer coupling to a ferromagnetic inter-bilayer coupling–antiferromagnetic intra-bilayer coupling phase transition is produced with the pressure increasing. The magnetic phase transition is simultaneously accompanied by a semiconductor–metal phase transition. The magnetic phase transition can be explained by the Mo–O hybridization strength, and ferromagnetic coupling between two Cr atoms can be understood by empty Mo-d bands perturbing the nearest O-p orbital.  相似文献   

7.
Hong Zeng 《中国物理 B》2022,31(5):56109-056109
The layered van der Waals antiferromagnetic FePS3 has received considerable attention because long range magnetic ordering can remain with single atoms layer, which offers potential applications in future ultrathin devices. Here, we perform Raman spectroscopy to systematically explore the variations of lattice vibration and crystal structure under pressure up to 18.9 GPa. We observe two structural phase transitions at approximately 4 GPa and 13 GPa, respectively. Moreover, by monitoring spin-related Raman modes, we demonstrate a pressure-induced magnetic structure transition above 2 GPa. These modes disappear accompanying the second structural phase transition and insulator-to-metal transition (IMT), indicating the suppression of long-range magnetic ordering, in agreement with earlier neutron powder diffraction experiments.  相似文献   

8.
The effect of an external magnetic field directed along various symmetry axes of a crystal on Jahn-Teller-type structural phase transitions (quadrupole ordering) is studied in YbPO4 and YbVO4 crystals with zircon structure. In the absence of a magnetic field, the crystals are in a precritical state and do not exhibit a spontaneous quadrupole ordering. It is shown that, in a field H ∥ [110], the strain susceptibility χγ increases with the field and, at a sufficiently high field strength, an orthorhombic lattice deformation along the [100] axis arises in the crystals under study; i.e., a stimulated Jahn-Teller phase transition of γ symmetry occurs. Using interaction constants determined from independent experiments, we calculated phase diagrams and anomalies in the magnetic and magnetoelastic properties of the YbPO4 and YbVO4 crystals near the stimulated phase transitions, investigated the effect of various pairwise interactions on them, and analyzed possible experimental observations of the predicted effects.  相似文献   

9.
Shijun Qin 《中国物理 B》2022,31(9):97503-097503
The single crystal of cubic perovskite BaFeO$_{3}$ shows multiple magnetic transitions and external stimulus sensitive magnetism. In this paper, a 5%-Co-doped BaFeO$_{3}$ (i.e. BaFe$_{0.95}$Co$_{0.05}$O$_{3})$ single crystal was grown by combining floating zone methods with high-pressure techniques. Such a slight Co doping has little effect on crystal structure, but significantly changes the magnetism from the parent antiferromagnetic ground state to a ferromagnetic one with the Curie temperature $T_{\rm C} \approx 120$ K. Compared with the parent BaFeO$_{3}$ at the induced ferromagnetic state, the saturated magnetic moment of the doped BaFe$_{0.95}$Co$_{0.05}$O$_{3}$ increases by about 10% and reaches 3.64 $\mu_{\rm B}$/f.u. Resistivity and specific heat measurements show that the ferromagnetic ordering favors metallic-like electrical transport behavior for BaFe$_{0.95}$Co$_{0.05}$O$_{3}$. The present work indicates that Co-doping is an effective method to tune the magnetic and electric properties for the cubic perovskite phase of BaFeO$_{3}$.  相似文献   

10.
The spectrum of magnetic excitations in a single crystal of intermetallic compound PrNi was studied by inelastic neutron scattering. Experiment showed the substantial softening of some collective magnetic excitation modes near the ferromagnetic ordering temperature T c≈20 K. The result is analyzed within the framework of a model that describes the magnetic phase transition in systems with induced magnetic moment.  相似文献   

11.
Magnetoelectric interactions have been investigated in a single crystal of gadolinium iron borate GdFe3(BO3)4, whose macroscopic symmetry is characterized by the crystal class 32. Using the results of this study, the interplay of magnetic and electric orderings occurring in the system has been experimentally revealed and theoretically substantiated. The electric polarization and magnetostriction of this material that arise in spin-reorientation transitions induced by a magnetic field have been investigated experimentally. For Hc and Hc, H-T phase diagrams have been constructed, and a strict correlation between the changes in the magnetoelectric and magnetoelastic properties in the observed phase transitions has been ascertained. A mechanism of specific noncollinear antiferroelectric ordering at the structural phase transition point was proposed to interpret the magnetoelectric behavior of the system within the framework of the symmetry approach in the entire temperature range. This ordering provides the conservation of the crystal class of the system when the temperature decreases to the antiferroelectric ordering point. The expressions that have been obtained for the magnetoelectric and magnetoelastic energy describe reasonably well the behavior of gadolinium iron borate observed experimentally.  相似文献   

12.
Paramagnetic layered semiconductor NbS2 doped with some transition metals can transform into ferromagnetic material. That is why such materials are promising candidates for spintronic devices. It is found that only at certain concentrations of a doping metal T crystallographic ordering is possible, which is essential for magnetic ordering of ternary compounds TNbS2. In particular, CrNb3S6 crystals are studied, which form almost completely ordered superstructure with intercalated Cr between NbS2 layers. The main difficulty in crystal growth is reaching stoichiometry of the compound. This problem is solved in the developed method of two-staged gas transport chemical reaction. This new approach provides growth of CrNb3S6 single crystals of several millimeters in diameter and 0.3–0.5 mm thickness. X-ray phase analysis (XRD) of powders is performed to identify all phases involved in synthesis and growth of the crystals. High frequency absorption in external periodic magnetic field as a function of temperature and intensity of magnetic field is used to estimate the temperature of ferromagnetic transition in CrNb3S6 single crystals. The Curie temperature is estimated as 115 K. Growth of CrNb3S6 crystals from vapor phase is studied in detail and full analysis of phase transitions during growth is given. It has been shown that using of high frequency absorption in the crystal provides reliable estimation of the point of ferromagnetic transition in this semiconductor. The authors are grateful to the Physical Science Department of Russian Academy of Sciences for financial support of the studies in the frameworks of the program “Physics of new materials and structures” (project no. 00-12-10).  相似文献   

13.
Investigations of new ferromagnetic shape-memory Ni-Mn-Z Heusler alloys (Z = In, Sn, Sb) are reviewed. Experimental data are described and explained on the assumption that these alloys undergo a phase transition from the ferromagnetic to the antiferromagnetic state (metamagnetic transition). The results of theoretical studies of the phase diagrams of these alloys are considered with regard to the possible change in the character of magnetic ordering (from ferromagnetic to antiferromagnetic) and interaction of the structural martensitic transformation with the metamagnetic transition.  相似文献   

14.
Correlations in metal shifts constitute an important feature of these sulfides. We have found these in the course of the crystal structure analysis of an ordered phase of bornite. Digenite undergoes one transition and bornite two transitions. The divers phases are more or less ordered and the phase changes are order disorder transitions. The magnetic properties of bornite depends only on the ordering of iron atom whose magnetic moments are ordered at low temperature.  相似文献   

15.
The semiconductor-semiconductor transition of La2RuO5 is studied by means of augmented spherical wave electronic structure calculations as based on density-functional theory and the local density approximation. This transition has lately been reported to lead to orbital ordering and a quenching of the local spin magnetic moment. Our results hint towards an orbital ordering scenario which, markedly different from the previously proposed scheme, preserves the local S=1 moment at the Ru sites in the low-temperature phase. The unusual magnetic behavior is interpreted by the formation of spin ladders, which result from the structural changes occurring at the transition and are characterized by antiferromagnetic coupling along the rungs.  相似文献   

16.
From all-electron fixed-spin-moment calculations we show that ferromagnetic and checkerboard antiferromagnetic ordering in LaFeAsO are not stable and the stripe antiferromagnetic configuration with M(Fe)=0.48 microB is the only stable ground state. The main exchange interactions between Fe ions are large, antiferromagnetic, and frustrated. The magnetic stripe phase breaks the tetragonal symmetry, removes the frustration, and causes a structural distortion. These results successfully explain the magnetic and structural phase transitions in LaFeAsO recently observed by neutron scattering. The presence of competing strong antiferromagnetic exchange interactions suggests that magnetism and superconductivity in doped LaFeAsO may be strongly coupled, much like in the high-T(c) cuprates.  相似文献   

17.
18.
The properties of antiferromagnetic materials with violated space-time parity are considered. Particular attention is given to the bismuth ferrite BiFeO3 ferroelectric magnet. This material is distinguished from other antiferromagnets in that the inversion center is absent in its crystal and magnetic structures. This circumstance gives rise to diversified and unusual properties, namely, to the appearance of a spatially modulated spin structure and to the unique possibility of the linear magnetoelectric effect coexisting with a weak ferromagnetic moment. The magnetic-induced phase transitions accompanied by the suppression of the modulated spin structure and appearance of a number of new and unusual effects are considered. These are the linear magnetoelectric effect and the appearance of a toroidal moment and a weak ferromagnetic moment of the magnetoelectric nature.  相似文献   

19.
X-ray diffraction studies showed substitution of nonmagnetic lanthanum for terbium in the TbMnSi polycrystalline compound to initiate a structural transition from a TiNiSi-type orthorhombic structure (for TbMnSi) to a CeFeSi-type tetragonal phase (for Tb0.5La0.5MnSi). Magnetic measurements (of the magnetization, magnetostriction, thermal expansion) performed on Tb0.5La0.5MnSi revealed a change in the character of magnetic ordering, the appearance of a ferromagnetic component in the Mn magnetic moment, a strong increase in magnetization as compared to TbMnSi, and the appearance of a spontaneous magnetic moment. Insertion of the lanthanum ion onto the rare-earth sublattice of TbMnSi brings about a change in the unit cell size and, hence, in the Mn-Mn, Mn-Si, and R-Mn interatomic distances, which causes, in turn, a change in the character of exchange interactions in Tb0.5La0.5MnSi and the formation of a complex magnetic structure.  相似文献   

20.
In this work, first-principles DFT scalar-relativistic calculations using the GGA functionals were performed to study the equilibrium properties of alternate structural phases of Co and Rh. The results show that cobalt orders ferromagnetically in the bcc, fcc and hcp phases, where the Co atoms carry magnetic moments of 1.80 μB, 1.71 μB and 1.69 μB, respectively. Rhodium is ferromagnetic only in the bcc phase where the Rh atoms carry a moment of 0.56 μB. The results yield evidence for the influence of the crystal symmetry in establishing ferromagnetic order in transition metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号