首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ab initio calculations were performed for special points of the minimal energy pathways (MEP) of the nucleophilic addition reactions of the isolated H anion, LiH molecule and Li+/H ion pair to acetylene (A) and methylacetylene (MA) molecules, proceeding in accordance (M) and against (aM) the Markovnikov's rule. All structural parameters were optimized using the restricted Hartree–Fock (RHF) method. For the addition of H, the 6-31++G* basis set was used and for the reactions of LiH and Li+/H the 6-31G* basis set with the subsequent recalculation of single point energies, taking into account of electron correlation energy by means of the second-order Möller–Plesset perturbation theory at the MP2/6-31++G** level. The results of calculations demonstrate, that the energy characteristics of both M- and aM-additions with H do not differ sufficiently (0.1–1.2 kcal/mol for the activation energies (ΔEa) and the reaction heats (ΔQ)). The substitution of the H atom by the CH3 group in A molecule results in practically the same values of ΔQ and ΔEa. On the contrary, for the LiH molecule and Li+/H ionic pair, the M-addition is favorable (charge control). It is found that the presence of electrophile decreases the activation energy by 3–5 kcal/mol as compared with the addition of the isolated hydride ion H.  相似文献   

2.
Ab initio MO GB theory which includes the continuum model of solvent effect using generalized Born formula has been applied to the dimerization reaction of HCN in aqueous solution which is the starting step in prebiotic synthesis of purine precursors from aqueous hydrogen cyanide. Three steps considered were: (i) the reaction of HCN and H2O to produce the CN anion, (ii) the reaction of CN with HCN to give the NC–CH=N anion, and (iii) the addition of a proton to the anion to give iminoacetonitrile. The formation of CN ion from HCN in aqueous solution requires 15.1 kcal/mol (the experimental value estimated from the dissociation constant of HCN in water is 14.8 kcal/mol). The reaction of CN with HCN requires the activation energy of 32.2 kcal/mol (MP2/6-31++G**//HF/6-31++G**) to give the dimer. This barrier height is reduced to 26.1 kcal/mol when HCN is associated with H3O+. In the presence of NH3 in aqueous solution, CN is produced easily by the reaction of HCN and NH3 with a low activation energy of 4.3 kcal/mol. It was shown that the formation of CN becomes easier in ammoniacal solution, and the dimerization occurs efficiently in aqueous solutions which contain NH3.  相似文献   

3.
NH2 profiles were measured in a discharge flow reactor at ambient temperature by monitoring reactants and products with an electron impact mass spectrometer. At the low pressures used (0.7 and 1.0 mbar) the gas-phase self-reaction is dominated by a ‘bimolecular’ H2-eliminating exit channel with a rate coefficient of k3b(300 K) = (1.3 ± 0.5) × 10−12 cm3 molecule−1 s−1 and leading to N2H2 + H2 or NNH2 + H2. Although the wall loss for NH2 radicals is relatively small (kw ≈ 6–14 s−1), the contribution to the overall NH2 decay is important due to the relatively slow gas-phase reaction. The heterogeneous reaction yields N2H4 molecules.  相似文献   

4.
The gas-phase rapid ion-molecule reaction Si+ (2P) + NH3→ SiNH2+ + H is theoretically investigated by the ab initio molecular orbital methods. Several possible pathways (A, B, C) on its potential energy surface have been examined, discussed and compared. Theoretical calculations indicate that pathway A is favourable in energy and that the reaction begins by forming a collision complex of the ion-dipole molecule Si-NH+3, which forms with no barrier into the first energy well of the reaction coordinate. Migration of an H atom from an N atom to a Si atom forms the intermediate HSi-NH+2, which corresponds to the second energy well and can fragment to the observed product SiNH+2 by losing an H atom from the Si atom. The barriers for migration and fragmentation are 52.5 and 38.6 kcal mol−1 respectively. Pathway A has a negative activation energy of −42.1 kcal mol−1.  相似文献   

5.
Hervine Miller 《Polyhedron》1986,5(12):1965-1968
There is kinetic evidence of the formation of [Co(NH3)5NCSAg3]5+ in the interaction of [Co(NH3]5NCS]2+ with Ag+ in aqueous solution, with pseudo-first-order formation rate constant k = 0.158 s−1 for the forward reaction in the following equation at 25°C and [Ag+] in the range of 1.23–5.0 × 10−2 mol dm−3 and 0.10 ionic strength (NaClO4): Additionally, the formation constant, β2, for [Co(NH3)5NCSAg2]4+ has been determined to be log β2 = 4.717. For the [Rh(NH3)5I]2+-Ag+ reaction there is evidence of an outer-sphere interaction with rate constants of k2 = 670 dm3 mol−1 s−1 at 25°C and 0.10 ionic strength. This outer-sphere species undergoes further reaction to give the silver ion containing intermediates of the aquation reactions.  相似文献   

6.
Monte Carlo simulation studies of statistical perturbation theory (SPT) have been carried out to investigate the solvent effects on the relative free energies of solvation and the difference in partition coefficients (log P) for K+ to Na+ ion mutation in the several solvents. We compared the relative free energies for interconversion of K+ to Na+, in H2O (TIP4P) in this study with those published works, that in H2O (TIP4P) is −16.55 kcal/mol in this study, those of the published works are −17.6, −17.3 and −17.31 kcal/mol and that of the experiment is −17.6 kcal/mol, respectively. Comparing the relative free energies for interconversion of K+ to Na+, in CH3OH in this study with those published works, that in CH3OH is −18.08±0.28 kcal/mol in this study, that of molecular dynamic simulation is −19.6±0.4 kcal/mol and that of the experimental work is −17.3 kcal/mol, respectively. There is good agreement among the several studies if we consider both methods of obtaining the solvation (or hydration) free energies and the standard deviations. For the present K+ and Na+ ions, the relative free energies of solvation vs Born's function of solvents are decreased with increasing Born's function of solvent except for CH3OH, THF and MEOME. There is also good agreement between the calculated structural properties in this study and the computer simulation, ab initio and experimental works.  相似文献   

7.
Mg+—Ar ion—molecule complexes are produced in a pulsed supersonic nozzle cluster source. The complexes are mass selected and studied with laser photodissociation spectroscopy in a reflectron time-of-flight mass spectrometer system. An electronic transition assigned as X 2Σ+2Π is observed with an origin at 31387 cm−1 (vac) for 24Mg+—Ar. The 24Mg+—Ar spectrum is characterized by a 15 member progression with a frequency (ω′e) of 272 cm−1. An extrapolation of this progression fixes the excited state dissociation energy (Do) at 5552 cm−1. The corresponding ground-state value (Do) is 1270 cm−1 (3.6 kcal/mol). The 2Π , spin—orbit splitting is 76 cm.  相似文献   

8.
The new iodoammonium salts o-C6H4(NH2)2I+I (1) and o-C6H4(NH2)2I+ AsF6 (2) were prepared by reaction of o-phenylene diamine with I2 or I3+AsF6, respectively. Compound 1 reacts with AlI3 yielding quantitatively the corresponding tetraiodoaluminate o-C6H4(NH2)2I+AlI4 (3). The species were characterized by chemical analysis, vibrational (IR and Raman) and temperature-dependent 1H NMR spectropscopy. Direct evidence for a N---I bond was found in the Raman spectra of 1, 2 and 3 (ν(NI) = 599–600 cm−1).  相似文献   

9.
The structures, energetics, vibrational frequencies and IR intensities of the H3N HF, H3N F2 and NH2FHF (three isomers) complexes were examined using the self-consistent field method within the 6-311G** basis set. The interaction energies were calculated using the MP2 approach. The results are compared with monomer calculations and experimental data. The complex NH2FHF was found to exist in three forms: one with the HF molecule hydrogen bonded to the nitrogen lone pair of NH2F (D0 =7.403 kcal mol−1), another a complex formed through the F atom lone pair (D0=4.698 kcal mol−1) and third a cyclic structure (D0=5.644 kcal mol−1).  相似文献   

10.
A substitution on 2,2-difluorovinylic carbon was investigated by using ab initio molecular orbital calculations. Three feasible mechanisms, which are the SN1-like, the SN2-type and the addition-elimination mechanisms, were ex- amined for a model borate, 2,2-difluoro-1-mesyloxyvinyl(trimethyl)borate. Four TSs were obtained depending on the position of Li+ around the vinylborate although activation energies in the gas phase are rather high (ca. 30–40 kcal mol−1) in comparison with that expected from the experimental conditions. It was confirmed at the SCRF-IPCM calculations that the solvent effect reduces the acti- vation energy of one SN2-type mechanism very much (4. l kcal mol−1 at the B3LYP/6-31+G*//RHF/6-31+G/s* level of theory) while those for the other mechanisms do not change very much. Therefore, the SN2-type mechanism is applicable to the substitution reaction observed for the vinylborate.  相似文献   

11.
Saddle point geometries and barrier heights have been calculated for the H abstraction reaction HO2(2A″)+H(2S) → H2(1Σ+g)+O2(3Σg) and the concerted H approach-O removing reaction HO2 (2A″)+H(2S) → H2O(1A1)+O(3P) by using SDCI wavefunctions with a valence double-zeta plus polarization basis set. The saddle points are found to be of Cs symmetry and the barrier heights are respectively 5.3 and 19.8 kcal by including size consistent correction. Moreoever kinetic parameters have been evaluated within the framework of the TST theory. So activation energies and the rate constants are estimated to be respectively 2.3 kcal and 0.4×109 ℓ mol−1 s−1 for the first reaction, 20.0 kcal and 5.4.10−5 ℓ mol−1 s−1 for the second. Comparison of these results with experimental determinations shows that hydrogen abstraction on HO2 is an efficient mechanism for the formation of H2 + O2, while the concerted mechanism envisaged for the formation of H2O + O is highly unlikely.  相似文献   

12.
The affinities of ammonia for Na+ and K+, recently determined experimentally, have been computed by the ab initio SCF method using ended polarized gaussian basis sets and shown to be satisfactory Furthermore, the corresponding values computed at the same level of accuracy for the three cations Li+, Na+, K+ and the two ligands NH3 and H2O are shown to yield the order Li+ > Na+ > K+ for each ligand and NH3 > H2O for each ion, in agreement with experiment. An analysis of the factors involved in the binding provides a consistent rationalization of these regularities and of some observed correlations.  相似文献   

13.
Autoionizing Rydberg levels of Li2 molecules in a supersonic molecular beam are populated by stepwise excitation with two tunable pulsed dye lasers. The observed autoionization spectra show severe perturbations. Based on calculations of quantum defects and a perturbation treatment of l-uncoupling a tentative assignment of Rydberg series up to n = 32 is proposed. The convergence limits of these series yield a value of IP = 41475 cm−1 for the adiabatic ionization potential and a vibrational constant ωe = 263 cm−1 for the X2Σ+g ground state of Li+2. The experimental results are compared with ab initio calculations combined with a core polarization potential, which yield the potential curve. the dissociation energy, the quadrupole moment and the vibrational frequency for the X2Σ+g ground state of Li+2, in the excellent agreement with experimental findings.  相似文献   

14.
The kinetic parameters were determined for C-trifluoromethylation of aniline with S-(trifluoromethyl)dibenzothiophenium triflate (1), its 3,7-dinitro derivative (2) and S-(trifluoromethyl)diphenylsulfonium triflate (3) in DMF-d7. The higher reactivity of heterocyclic 1 compared with non-heterocyclic 3 could be explained on the basis of its greatly enhanced activation entropy (ΔS: −11.2 cal mol −1 K−1 for 1; −47.1 for 3), but not its enhanced activation enthalpy (ΔH: 21.2 kcal mol−1 for 1; 12.1 for 3). The aromatic delocalization of the heterocyclic ring may thus be only slightly disturbed by the S-trifluoromethyl substituent. The high reactivity of 2 was attributed to the great electron deficiency caused by two nitro groups in addition to the heterocyclic salt system (ΔH 17.0 kcal mol−1, ΔS −9.1 cal mol−1 K−1 for 2). The reaction mechanism is discussed; the conventional SN2 attack mechanism was ruled out and a mechanism for a side-on attack to the CF3-S bond may possibly be applicable.  相似文献   

15.
The gas phase fragmentation reactions of protonated cysteine and cysteine-containing peptides have been studied using a combination of collisional activation in a tandem mass spectrometer and ab initio calculations [at the MP2(FC)/6-31G*//HF/6-31G* level of theory]. There are two major competing dissociation pathways for protonated cysteine involving: (i) loss of ammonia, and (ii) loss of the elements of [CH2O2]. MS/MS, MS/MS of selected ions formed by collisional activation in the electrospray ionization source as well as ab initio calculations have been carried out to determine the mechanisms of these reactions. The ab initio results reveal that the most stable [M + H − NH3]+ isomer is an episulfonium ion (A), whereas the most stable [M + H − CH2O2]+ isomer is an immonium ion (B). The effect of the position of the cysteine residue on the fragmentation reactions of the [M + H]+ ions of all the possible simple dipeptide and tripeptide methyl esters containing one cysteine (where all other residues are glycine) has also been investigated. When cysteine is at the N-terminal position, NH3 loss is observed, although the relative abundance of the resultant [M + H − NH3]+ ion decreases with increasing peptide size. In contrast, when cysteine is at any other position, water loss is observed. The proposed mechanism for loss of H2O is in competition with those channels leading to the formation of structurally relevant sequence ions.  相似文献   

16.
Gamma irradiation of aerated aqueous solutions of ammonia leads to the formation of nitrite as a radiolytic product. Its yield increases with increasing concentration of NH3 as well as O2. OH radicals react with NH3 to give NH2 radicals, which in the presence of O2 form NH2O2 radicals. These radicals finally lead to the formation of nitrite. G(NO2) decreases with increasing radiation dose due to secondary reactions. Its initial yield, however, is more than 1/2GOH, while hydrogen peroxide yield is less than the expected value viz. G(H2O2) + 1/2G(eaq), indicating its participation in reactions with radiation produced free radicals. G(H2) is 0.35 in aerated aqueous solutions of 10−3 mol dm−3 NH3 and 0.23 in the absence of oxygen. Implications of these results to the use of NH3 in primary coolant water of pressurized water nuclear power reactors of the VVER type are discussed.  相似文献   

17.
Hydrogen bonding to the photoaccumulated secondary acceptor radical anion A1√− in photosystem (PS) I has been studied using pulsed Q-band ENDOR spectroscopy. With deuterated quinone in protonated PS I particles it is demonstrated that the observed radical anion has only one hydrogen-bond hyperfine coupling (hfc) tensor with tensor components above the 2 MHz range. Below 2 MHz the protein matrix protons dominate and a second weak H-bond could not be detected. The spectral resolution of pulsed Q-band ENDOR is critically required to separate the signals of the H-bond proton from those of the primary chlorophyll acceptor, A0√−, which cannot be avoided to be formed to some extent in the photoaccumulation procedure. The determined H-bond hfc tensor of A1√− is found to be close to axial symmetry with a small isotropic component, as expected from a predominantly dipolar electron–proton spin interaction in a hydrogen-bond. The principal tensor components are A=(+)7.7, MHz A=(−)4.9 MHz, Aiso=(−)0.7 MHz. The magnitude of the dipolar tensor corresponds to an unusually short H-bond which can be estimated from the point-dipole approximation (1.5±0.1 Å). Based on previous studies with A- and B-branch specific site-directed mutants of the A1 site of PS I and the chosen photoaccumulation protocol, the observed A1√− radical anion can be assigned to the QK–A site of the A-branch. The observed H-bond hfc tensor is compared to those determined for related quinone radical anions observed in frozen protic solution as well as in the QA site of type II bacterial reaction centers.  相似文献   

18.
在合成与研究钠盐的基础上[1,2],我们又合成了锂、钾和铵盐,通过元素分析、分子量测定、质谱分析、X射线衍射、紫外和红外吸收光谱分析和热重分析确定了新化合物的组成与化学式并推测了化合物的结构式。  相似文献   

19.
The semiempiric CNDO method with the modified potential of core-core repulsion is used for quantum-chemical calculations of the potential surface cross-sections, charge distribution and the electrostatic field in complexes of the type A…M+ (A = ClO4, NO3, SCN, BF4, AsF6; M+ = Li+, Na+) and A…M+…Mol (acetonitrile, pyridine, dimethylformamide, dimethylsufloxide, nitromethane, tetrahydrofuran). It is established that the anion-cation interaction potential has the form of a complex function with several minima which correspond to possible types of coordination between anions and cations. The effect of solvent molecules leads to the weakening of the interionic bond and the decrease of the potential barrier between configurations with different types of anion-cation coordination.  相似文献   

20.
Li Liu  Jun-feng Song  Peng-fei Yu  Bin Cui 《Talanta》2007,71(5):1842-1848
A novel voltammetric method for the determination of β-d-glucose (GO) is proposed based on the reduction of Cu(II) ion in Cu(II)(NH3)42+–GO complex at lanthanum(III) hydroxide nanowires (LNWs) modified carbon paste electrode (LNWs/CPE). In 0.1 mol L−1 NH3·H2O–NH4Cl (pH 9.8) buffer containing 5.0 × 10−5 mol L−1 Cu(II) ion, the sensitive reduction peak of Cu(II)(NH3)42+–GO complex was observed at −0.17 V (versus, SCE), which was mainly ascribed to both the increase of efficient electrode surface and the selective coordination of La(III) in LNW to GO. The increment of peak current obtained by deducting the reduction peak current of the Cu(II) ion from that of the Cu(II)(NH3)42+–GO complex was rectilinear with GO concentration in the range of 8.0 × 10−7 to 2.0 × 10−5 mol L−1, with a detection limit of 3.5 × 10−7 mol L−1. A 500-fold of sucrose and amylam, 100-fold of ascorbic acid, 120-fold of uric acid as well as gluconic acid did not interfere with 1.0 × 10−5 mol L−1 GO determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号