首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sharp result on global small solutions to the Cauchy problem $$u_t = \Delta u + f\left( {u,Du,D^2 u,u_t } \right)\left( {t > 0} \right),u\left( 0 \right) = u_0 $$ In Rn is obtained under the the assumption thatf is C1+r forr>2/n and ‖u 0‖C2(R n ) +‖u 0‖W 1 2 (R n ) is small. This implies that the assumption thatf is smooth and ‖u 0 ‖W 1 k (R n )+‖u 0‖W 2 k (R n ) is small fork large enough, made in earlier work, is unnecessary.  相似文献   

2.
In this paper we first characterize the pre-Hilbert algebras with a norm-one central idempotent e such that ‖ex‖ = ‖x‖ for any xA. This generalizes a well-known theorem by Ingelstam asserting that every alternative pre-Hilbert algebra with a unit 1 such that ‖1‖ = 1 is isomorphic to ?, ?, ? or $\mathbb{O}$ . We also show that every power-associative pre-Hilbert algebra satisfying ‖x 2‖ = ‖x2 for every element has a unique nonzero idempotent, which is a unit element. In fact, the same conclusion will be proved in a more general setting. As application we give some conditions characterizing when a real algebra A, which is a prehilbert space, is isomorphic to one of the Hilbert algebras ?, ?, ? or $\mathbb{O}$ .  相似文献   

3.
In this paper, with the help of spectral integral, we show a quantitative version of the Bishop-Phelps theorem for operators in complex Hilbert spaces. Precisely, let H be a complex Hilbert space and 0 ε 1/2. Then for every bounded linear operator T : H → H and x0 ∈ H with ||T|| = 1 = ||x0|| such that ||Tx0|| 1 ε, there exist xε∈ H and a bounded linear operator S : H → H with||S|| = 1 = ||xε|| such that ||Sxε|| = 1, ||xε-x0|| ≤ (2ε)1/2 + 4(2ε)1/2, ||S-T|| ≤(2ε)1/2.  相似文献   

4.
Partial solutions are obtained to Halmos’ problem, whether or not any polynomially bounded operator on a Hilbert spaceH is similar to a contraction. Central use is made of Paulsen’s necessary and sufficient condition, which permits one to obtain bounds on ‖S‖ ‖S ?1‖, whereS is the similarity. A natural example of a polynomially bounded operator appears in the theory of Hankel matrices, defining $$R_f = \left( {\begin{array}{*{20}c} {S*} \\ 0 \\ \end{array} \begin{array}{*{20}c} {\Gamma _f } \\ S \\ \end{array} } \right)$$ onl 2l 2, whereS is the shift and Γ f the Hankel operator determined byf withf′ ∈ BMOA. Using Paulsen’s condition, we prove thatR f is similar to a contraction. In the general case, combining Grothendieck’s theorem and techniques from complex function theory, we are able to get in the finite dimensional case the estimate $$\left\| S \right\|\left\| {S^{ - 1} } \right\| \leqq M^4 log(dim H)$$ whereSTS ?1 is a contraction and assuming \(\left\| {p\left( T \right)} \right\| \leqq M\left\| p \right\|_\infty \) wheneverp is an analytic polynomial on the disc.  相似文献   

5.
Letf εC[?1, 1], ?1<α,β≤0, let $f \in C[ - 1, 1], - 1< \alpha , \beta \leqslant 0$ , letS n α, β (f, x) be a partial Fourier-Jacobi sum of ordern, and let $$\nu _{m, n}^{\alpha , \beta } = \nu _{m, n}^{\alpha , \beta } (f) = \nu _{m, n}^{\alpha , \beta } (f,x) = \frac{1}{{n + 1}}[S_m^{\alpha ,\beta } (f,x) + ... + S_{m + n}^{\alpha ,\beta } (f,x)]$$ be the Vallée-Poussin means for Fourier-Jacobi sums. It was proved that if 0<a≤m/n≤b, then there exists a constantc=c(α, β, a, b) such that ‖ν m, n α, β ‖ ≤c, where ‖ν m, n α, β ‖ is the norm of the operator ν m, n α, β inC[?1,1].  相似文献   

6.
In this paper we shall assert that if T is an isomorphism of L1, A, μ) into L2, B, υ) satisfying the condition ‖T‖·‖T ?1‖?1+? for ?∈ $\left( {0,\frac{1}{5}} \right)$ , then $\frac{T}{{\parallel T\parallel }}$ is close to an isometry with an error less than 6ε in some conditions.  相似文献   

7.
Consider the Sobolev space W 2 n (?+) on the semiaxis with norm of general form defined by a quadratic polynomial in derivatives with nonnegative coefficients. We study the problem of exact constants A n,k in inequalities of Kolmogorov type for the values of intermediate derivatives |f (k)(0)| ≤ A n,k f‖. In the general case, the expression for the constants A n,k is obtained as the ratio of two determinants. Using a general formula, we obtain an explicit expression for the constants A n,k in the case of the following norms: $$ \left\| f \right\|_1^2 = \left\| f \right\|_{L_2 }^2 + \left\| {f^{(n)} } \right\|_{L_2 }^2 and\left\| f \right\|_2^2 = \sum\limits_{l = 0}^n {\left\| {f^{(l)} } \right\|_{L_2 }^2 } . $$ In the case of the norm ‖ · ‖1, formulas for the constants A n,k were obtained earlier by another method due to Kalyabin. The asymptotic behavior of the constants A n,k is also studied in the case of the norm ‖ · ‖2. In addition, we prove a symmetry property of the constants A n,k in the general case.  相似文献   

8.
9.
We study in various functional spaces the equiconvergence of spectral decompositions of the Hill operator L = ?d 2/dx 2 + v(x), xL 1([0, π], with H per ?1 -potential and the free operator L 0 = ?d 2/dx 2, subject to periodic, antiperiodic or Dirichlet boundary conditions. In particular, we prove that $\left\| {S_N - S_N^0 :L^a \to L^b } \right\| \to 0if1 < a \leqslant b < \infty ,1/a - 1/b < 1/2,$ , where S N and S N 0 are the N-th partial sums of the spectral decompositions of L and L 0. Moreover, if vH with 1/2 < α < 1 and $\frac{1} {a} = \frac{3} {2} - \alpha $ , then we obtain the uniform equiconvergence ‖S N ?S N 0 : L a L ‖ → 0 as N → ∞.  相似文献   

10.
Let (n k ) k≧1 be a lacunary sequence of positive integers, i.e. a sequence satisfying n k+1/n k > q > 1, k ≧ 1, and let f be a “nice” 1-periodic function with ∝ 0 1 f(x) dx = 0. Then the probabilistic behavior of the system (f(n k x)) k≧1 is very similar to the behavior of sequences of i.i.d. random variables. For example, Erd?s and Gál proved in 1955 the following law of the iterated logarithm (LIL) for f(x) = cos 2πx and lacunary $ (n_k )_{k \geqq 1} $ : (1) $$ \mathop {\lim \sup }\limits_{N \to \infty } (2N\log \log N)^{1/2} \sum\limits_{k = 1}^N {f(n_k x)} = \left\| f \right\|_2 $$ for almost all x ∈ (0, 1), where ‖f2 = (∝ 0 1 f(x)2 dx)1/2 is the standard deviation of the random variables f(n k x). If (n k ) k≧1 has certain number-theoretic properties (e.g. n k+1/n k → ∞), a similar LIL holds for a large class of functions f, and the constant on the right-hand side is always ‖f2. For general lacunary (n k ) k≧1 this is not necessarily true: Erd?s and Fortet constructed an example of a trigonometric polynomial f and a lacunary sequence (n k ) k≧1, such that the lim sup in the LIL (1) is not equal to ‖f2 and not even a constant a.e. In this paper we show that the class of possible functions on the right-hand side of (1) can be very large: we give an example of a trigonometric polynomial f such that for any function g(x) with sufficiently small Fourier coefficients there exists a lacunary sequence (n k ) k≧1 such that (1) holds with √‖f 2 2 + g(x) instead of ‖f2 on the right-hand side.  相似文献   

11.
We consider the weighted space W 1 (2) (?,q) of Sobolev type $$W_1^{(2)} (\mathbb{R},q) = \left\{ {y \in A_{loc}^{(1)} (\mathbb{R}):\left\| {y''} \right\|_{L_1 (\mathbb{R})} + \left\| {qy} \right\|_{L_1 (\mathbb{R})} < \infty } \right\} $$ and the equation $$ - y''(x) + q(x)y(x) = f(x),x \in \mathbb{R} $$ Here f ε L 1(?) and 0 ? qL 1 loc (?). We prove the following:
  1. The problems of embedding W 1 (2) (?q) ? L 1(?) and of correct solvability of (1) in L 1(?) are equivalent
  2. an embedding W 1 (2) (?,q) ? L 1(?) exists if and only if $$\exists a > 0:\mathop {\inf }\limits_{x \in R} \int_{x - a}^{x + a} {q(t)dt > 0} $$
  相似文献   

12.
In a previous paper [4] the following problem was considered:find, in the class of Fourier polynomials of degree n, the one which minimizes the functional: (0.1) $$J^* [F_n ,\sigma ] = \left\| {f - F_n } \right\|^2 + \sum\limits_{r = 1}^\infty {\frac{{\sigma ^r }}{{r!}}} \left\| {F_n^{(r)} } \right\|^2$$ , where ∥·∥ is theL 2 norm,F n (r) is therth derivative of the Fourier polynomialF n (x), andf(x) is a given function with Fourier coefficientsc k . It was proved that the optimal polynomial has coefficientsc k * given by (0.2) $$c_k^* = c_k e^{ - \sigma k^2 } ; k = 0, \pm ,..., \pm n$$ . In this paper we consider the more general functional (0.3) $$\hat J[F_n ,\sigma _r ] = \left\| {f - F_n } \right\|^2 + \sum\limits_{r = 1}^\infty {\sigma _r \left\| {F_n^{(r)} } \right\|^2 }$$ , which reduces to (0.1) forσ r r /r!. We will prove that the classical sigma-factor method for the regularization of Fourier polynomials may be obtained by minimizing the functional (0.3) for a particular choice of the weightsσ r . This result will be used to propose a motivated numerical choice of the parameterσ in (0.1).  相似文献   

13.
Suppose{e i} i=1 n and{f i} i=1 n are symmetric bases of the Banach spacesE andF. Letd(E,F)≦C andd(E,l n 2 )≧n' for somer>0. Then there is a constantC r=Cr(C)>0 such that for alla i∈Ri=1,...,n $$C_r^{ - 1} \left\| {\sum\limits_{i = 1}^n {a_i e_i } } \right\| \leqq \left\| {\sum\limits_{i = 1}^n {a_i f_i } } \right\| \leqq C_r \left\| {\sum\limits_{i = 1}^n {a_i e_i } } \right\|$$ We also give a partial uniqueness of unconditional bases under more restrictive conditions.  相似文献   

14.
It is shown that the uniform distance between the distribution function $F_n^K(h)$ of the usual kernel density estimator (based on an i.i.d. sample from an absolutely continuous law on ${\mathbb{R}}$ ) with bandwidth h and the empirical distribution function F n satisfies an exponential inequality. This inequality is used to obtain sharp almost sure rates of convergence of $\|F_n^K(h_n)-F_n\|_\infty$ under mild conditions on the range of bandwidths h n , including the usual MISE-optimal choices. Another application is a Dvoretzky–Kiefer–Wolfowitz-type inequality for $\|F_n^{K}(h)-F\|_\infty$ , where F is the true distribution function. The exponential bound is also applied to show that an adaptive estimator can be constructed that efficiently estimates the true distribution function F in sup-norm loss, and, at the same time, estimates the density of F—if it exists (but without assuming it does)—at the best possible rate of convergence over Hölder-balls, again in sup-norm loss.  相似文献   

15.
The maximal order of the coefficients of an arbitrary polynomialP having coefficients in ${\mathbb{T}}$ and the quotient of ‖P L 4 divided by ‖P L 2 depends on the behavior of them in ${\mathbb{T}}$ . In this paper we show thatP can be approximated with another such polynomials which has coefficients as roots of unity.  相似文献   

16.
We consider the space h ν of harmonic functions in R + n+1 with finite norm ‖u ν = sup |u(x, t)|/v(t), where the weight ν satisfies the doubling condition. Boundary values of functions in h ν are characterized in terms of their smooth multiresolution approximations. The characterization yields the isomorphism of Banach spaces h ν l . The results are also applied to obtain the law of the iterated logarithm for the oscillation of functions in h ν along vertical lines.  相似文献   

17.
Let S j : (Ω, P) → S 1 ? ? be an i.i.d. sequence of Steinhaus random variables, i.e. variables which are uniformly distributed on the circle S 1. We determine the best constants a p in the Khintchine-type inequality $${a_p}{\left\| x \right\|_2} \leqslant {\left( {{\text{E}}{{\left| {\sum\limits_{j = 1}^n {{x_j}{S_j}} } \right|}^p}} \right)^{1/p}} \leqslant {\left\| x \right\|_2};{\text{ }}x = ({x_j})_{j = 1}^n \in {{\Bbb C}^n}$$ for 0 < p < 1, verifying a conjecture of U. Haagerup that $${a_p} = \min \left( {\Gamma {{\left( {\frac{p}{2} + 1} \right)}^{1/p}},\sqrt 2 {{\left( {{{\Gamma \left( {\frac{{p + 1}}{2}} \right)} \mathord{\left/ {\vphantom {{\Gamma \left( {\frac{{p + 1}}{2}} \right)} {\left[ {\Gamma \left( {\frac{p}{2} + 1} \right)\sqrt \pi } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {\Gamma \left( {\frac{p}{2} + 1} \right)\sqrt \pi } \right]}}} \right)}^{1/p}}} \right)$$ . Both expressions are equal for p = p 0 }~ 0.4756. For p ≥ 1 the best constants a p have been known for some time. The result implies for a norm 1 sequence x ∈ ? n , ‖x2 = 1, that $${\text{E}}\ln \left| {\frac{{{S_1} + {S_2}}}{{\sqrt 2 }}} \right| \leqslant {\text{E}}\ln \left| {\sum\limits_{j = 1}^n {{x_j}{S_j}} } \right|$$ , answering a question of A. Baernstein and R. Culverhouse.  相似文献   

18.
The following theorem is provedTheorem 1.Let q be a polynomial of degree n(qP_n)with n distinct zeroes lying inthe interval[-1,1] and△'_q={-1}∪{τ_i:q'(τ_i)=0,i=1,n-1}∪{1}.If polynomial pP_n satisfies the inequalitythen for each k=1,n and any x[-1,1]its k-th derivative satisfies the inequality丨p~(k)(x)丨≤max{丨q~((k))(x)丨,丨1/k(x~2-1)q~(k+1)(x)+xq~((k))(x)丨}.This estimate leads to the Markov inequality for the higher order derivatives ofpolynomials if we set q=T_n,where Tn is Chebyshev polynomial least deviated from zero.Some other results are established which gives evidence to the conjecture that under theconditions of Theorem 1 the inequality ‖p~((k))‖≤‖q~(k)‖holds.  相似文献   

19.
LetX be an infinite dimensional Banach space, andX* its dual space. Sequences {χ n * } n=1 ?X* which arew* converging to 0 while inf n x* n ‖>0, are constructed.  相似文献   

20.
Given a family $ \{ A_m^x \} _{\mathop {m \in \mathbb{Z}_ + ^d }\limits_{x \in X} } $ (X is a non-empty set) of bounded linear operators between the complex inner product space $ \mathcal{D} $ and the complex Hilbert space ? we characterize the existence of completely hyperexpansive d-tuples T = (T 1, … , T d ) on ? such that A m x = T m A 0 x for all m ? ? + d and x ? X.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号