首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Eight new -oxamido-bridged copper(II)–lanthanoid(III) heterobinuclear complexes described by the overall formula Cu(obbz)Ln(Me-phen)2NO3 (Ln = Y, La, Nd, Eu, Gd, Tb, Ho, Er), where obbz denotes the oxamidobis(benzoato) and Me-phen represents 5-methyl-1,10-phenanthroline (Me-phen), have been synthesized and characterized by the elemental analyses, spectroscopic (i.r., u.v., e.s.r.) studies, magnetic moments (at room temperature) and by molar conductivity measurements. The temperature dependence of the magnetic susceptibility of Cu(obbz)Gd(Me-phen)2NO3 has also been measured over the 4.2 300 K range. The least-squares fit of the experimental susceptibilities based on the spin Hamiltonian operator, = –2 J 1 · 2, yielded J = + 2.18 cm–1. The observed GdIII–CuII coupling is ferromagnetic. A plausible mechanism for a ferromagnetic coupling between GdIII–CuII is discussed in terms of spin-polarization.  相似文献   

2.
Six new -oxamido heterobinuclear complexes, namely [Cu(oxap)Fe(L)2]SO4, where oxap denotes the N,N-bis(2-aminopropyl)oxamido dianion and L represents 1,10-phenanthroline (phen); 5-nitro-1,10-phenanthroline (NO2-phen); 5-chloro-1,10-phenanthroline (Cl-phen); 5-methyl-1,10-phenanthroline (Me-phen); 2,2-bipyridine (bpy); and 4,4-dimethyl-2,2-bipyridine (Me2bpy), have been synthesized and characterized by elemental analyses, i.r. spectra, electronic spectra, magnetic moments (at room temperature) and molar conductivity measurements. The temperature dependent magnetic susceptibilities of [Cu(oxap)Fe(bpy)2]SO4 (1) and [Cu(oxap)Fe(phen)2]SO4 (2) have been studied in the 4.2–300K range, giving the exchange integrals J=–20.9cm–1 for (1) and J=–22.5cm–1 for (2). These results are commensurate with antiferromagnetic interactions between adjacent metal ions within each molecule.  相似文献   

3.
Microwave chemistry is a green chemical method that improves reaction conditions and product yields while reducing solvent amounts and reaction times. The main aim of this article is to synthesize the tetradentate N2O2 ligand [HO(Ar)CH=N–(CH2)2–N=CH(Ar)OH] and manganese(II), cobalt(II), nickel(II), and zinc(II) complexes of the type ML by classical and microwave techniques. The resulting Schiff base and its complexes are characterized by 1H NMR, infrared, elemental analysis, and electronic spectral data. The ligand and its Co(II) and Mn(II) complexes were further identified by X-ray diffraction and mass spectra to confirm the structure. The results suggest that the metal is bonded to the ligand through the phenolic oxygen and the imino nitrogen.  相似文献   

4.
CoII and NiII complexes of N(4)-methyl and N(4)-ethyl thiosemicarbazones derived from 3- and 4-acetylpyridine have been prepared and characterized by microanalyses, magnetic susceptibility and molar conductivity measurements and by their electronic, i.r. and n.m.r. (in the case of NiII complexes) spectra.  相似文献   

5.
以改性玉米苞叶纤维为载体(MCF),负载Mn(II)和Fe(II)制备了Mn(II)-Fe(II)-MCF复合材料,催化H2O2氧化水中染料。通过傅立叶变换红外/近红外成像系统和扫描电子显微镜对其结构和形貌进行表征。实验结果表明:当染料浓度为10 mg·L-1,Mn(II)-Fe(II)-MCF用量为4 g·L-1,H2O2初始浓度为1.56 mmol·L-1,Mn(II)-Fe(II)-MCF对四种染料的催化效率明显不同。阳离子蓝X-GRRL(CBX-GRRL)降解效果最好,其次是甲基橙(MO)、次甲基蓝(MB)和罗丹明B(RhB)。对染料的氧化反应进行动力学分析,MO的降解反应为二级反应,CBX-GRRL、MB和RhB的降解反应均为一级反应。Mn(II)-Fe(II)-MCF适合催化氧化偶氮染料废水。  相似文献   

6.
Novel complexing processes in the CuII–dithiooxamide–methanal, CuII–dithiooxamide–ethanal and CuII–dithiooxamide–propanone triple systems proceeding under specific conditions, to copper(II)hexacyanoferrate(II) gelatin-immobilized matrix systems in contact with aqueous-alkaline (pH 12) solutions containing dithiooxamide and methanal, ethanal or propanone, have been studied. It has been shown that template synthesis leading to the formation of macrocyclic coordination compounds (2,8-dithio-3,7-diaza-5-oxanonandithioamide-1,9)copper(II), (2,8-dithio-3,7-diaza-4,6-dimethyl-5-oxanonandithio-amide-1,9)copper(II) and (4,4,6-trimethyl-2,8-dithio-3,7-diazanonen-6-dithioamide-1,9)copper(II), respectively, takes place under such conditions. Dithiooxamide, methanal, ethanal and propanone act as ligand synthons in these processes.  相似文献   

7.
Divalent metal complexes of N,N′-bis(4-imidazolymethyl)etylenediamine (EMI) have been studied using potentiometric and spectroscopic techniques (UV-Vis and NMR methods) in aqueous 0.1 mol⋅L−1 KCl supporting electrolyte at 25 °C. Final models and overall stability constants for the complexes of Ca(II), Cd(II), Co(II), Cu(II), Mg(II), Mn(II), Ni(II), Pb(II) and Zn(II) have been established by potentiometry for all M(II)–EMI systems, except for Co(II)–EMI. The data revealed that EMI forms ML complexes with all M(II)–EMI systems, which is the dominant species over a wide range of pH except for the Ca(II)–EMI and Mg(II)–EMI systems. Formation of the MnHL complex was also found for Mn(II)–EMI solutions. In addition, the UV-Vis and 1H NMR results allowed us establish the coordination modes for the metal complexes between EMI with Cd(II), Cu(II), Ni(II) and Zn(II).  相似文献   

8.
Abstract

The coordination in aqueous solution of 4-chloro-1,2-phenylenediamine-N',N',N',N'-tetraacetic acid (4-Cl-o-PDTA) with Be(II) and with the transition metal cations cobalt(II), nickel(II) and copper(II) was reported in earlier publications.1,2 In this note a study is presented of the coordination in aqueous solution (25°C, 1 = 0.1 M in KC1) of 4-CI-o-PDTA acid with magnesium(II), calcium(II), strontium(II), barium(II), zinc(II) and cadmium(II).  相似文献   

9.
Summary MnII, NiII and CuII complexes of (1,3-bis-aminomethyl)-cyclohexane-N,N,N,N-tetrakisbenzimidazole (CDTB) have been prepared and characterized by spectral techniques. The complexes are monomeric and pseudo-octa-hedral, as evidenced by their e.p.r. spectra and analytical data. Parameters 2, 2, 2 and for CuII complexes, and the crystal field splitting parameter (10 Dq) together with the Nephelauxetic ratio (), for NiII complexes, are reported.  相似文献   

10.
Novel complexing processes in the CuII–8-mercaptoquinoline, CuII–5,8-dimercaptoquinoline and CuII–5-thiomethyl-8-mercaptoquinoline systems proceeding in the copper(II)hexacyanoferrate(II) gelatin-immobilized matrix in contact with aqueous solutions of the ligands indicated, have been studied. Under the conditions specified for complexing in the CuII–8-mercaptoquinoline system, only a monomeric water-insoluble coordination compound was formed. In the CuII–5,8-dimercaptoquinoline system, three coordination compounds were formed and, in the CuII–5-thiomethyl-8-mercaptoquinoline system, two such compounds were formed. Conversely, complexing in solution or solid phase results in the formation only coordination compounds in each of the system studied.  相似文献   

11.
EPR of Mn(II)-doped single crystals of cis-catena-μ-sulphato-aquotris(imidazole)cadmium(II) has been studied in the temperature range 300-90 K. Mn(II) replaces Cd(II) substitutionally giving rise to two magnetically inequivalent sites. The large magnitude and high asymmetry component of the D-tensor is in accordance with the low symmetry of the substitutional site. Due to the non-first order nature of the spectrum all the work had to be carried out at Q-band frequency. Forbidden transitions corresponding to ΔmI = ± 1 and ±2 are observed for a number of orientations and their positions have been calculated by perturbation theory taking into account the second order admixtures due to cross terms in D and hyperfine coupling constant A. The spin—Hamiltonian parameters at 300 K are A = −83.5, D = −790.0, E = −80.4 (all in units of 10−4 cm−1) and g = 2.0014.  相似文献   

12.
The title compound, [Co(C23H29N3O4)]·0.5C2H6O or [CoII{(4-MeO-sal)2Medpt}]·0.5CH3CH2OH [(4-MeO-sal)2Medpt is N,N′-(4-methyl-4-aza­heptane-1,7-diyl)­bis(4-methoxysalicyl­iden­iminate)], obtained through the reaction of H2[(4-MeO-sal)2Medpt] and Co(CH3COO)2 in refluxing ethanol under an atmosphere of ultrapure nitro­gen, has the usual pseudo-trigonal-bipyramidal coordination arrangement previously found for this class of (sal)2Rdpt compounds. The O—Co—O bond angle [120.4 (1)°] is significantly smaller than the corresponding values previously found for most non-O2-bound [CoII{(sal)2Medpt}]-type mol­ecules (observed range 126.9–138.6°), whereas the equatorial Co—N bond [2.185 (3) Å] is relatively long.  相似文献   

13.

In this study, a mononuclear CuL complex was prepared by the use of bis-N,N′-(salicylidene)-1, 3-propanediamine (LH2) and Cu2+ ion. NiCl2 and NiBr2 salt were treated with this complex in dioxanewater medium and two new complexes [(CuL)2NiCl2(H2O)2] and [(CuL)2NiBr2(H2O)2)] with Cu(II)–Ni(II)–Cu(II) nucleus structure were obtained. In addition to this bis-N,N′-(2-hydroxybenzyl)-1,3-diaminopropane (LHH2) was prepared by the reduction of LH2 with NaBH4 in MeOH medium. The treatment of this reduced complex with Cu2+ ion resulted a complex [(CuLH)2CuCl2] with a structure of Cu(II)–Cu(II)–Cu(II). The complexes prepared were characterized by the use of elemental analysis, IR spectroscopy, thermogravimetric and X-ray diffraction methods. The crystal structures of [(CuL)2NiBr2(H2O)2] (СIF file CCDC 1448402) and [(CuLH)2CuCl2] (СIF file CCDC 1448401) complexes were elucidated. It was found that halogen ions are coordinated to terminal Cu2+ ions which are in a distorted square pyramid coordination sphere. It was determined that the central Cu(II), which joins terminal square pyramidal Cu(II), was coordinated only by the phenolic oxygens of the ligand while the central Ni(II) was coordinated by two phenolic oxygens of the organic ligand and two water molecules. These complexes were investigated by XPS and it was found that the terminal and central Cu2+ ions were different in Cu(II)–Cu(II)–Cu(II) complex. Also, the thermal degradation of the CuLH complex unit was observed to exothermic in contrast to the expectations.

  相似文献   

14.
The influence of new water soluble cationic metalloporphyrin Cu(II)TOEPyP(4) (meso-tetra-(4-N-oxyethylpyridyl)), analogue of Cu(II)TMPyP(4), on thermodynamic stability of DNA at various molar ratios of r = porphyrin/DNA b.p. (0 < r < 0.12) has been studied. It has been shown that Cu(II)TOEPyP(4) is a strong stabilizing agent for calf thymus DNA increasing its melting temperature from 75.5 to 99.5 °C, in the range 0 < r < 0.06. The melting enthalpy (∆H m) does not change in the range 0.002 < r < 0.06 and it equals to 11.6 ± 0.8 cal/g. At r > 0.07, ∆H m and T m decrease, and at r = 0.12 they equal to 6.4 ± 0.6 cal/g and 92.5 °C, accordingly. We suggest that such centers of binding are the well documented 5′CG3′ sites and G-quadruplex at r < 0.01, and negatively charged phosphate groups at r > 0.01. On the basis of ∆H m invariability with simultaneous increase of T m in the range 0.002 < r < 0.06, it is shown that the DNA-Cu(II)TOEPyP(4) complex melting is not of an enthalpic nature but of an entropic one. The two-phase helix–coil transition of DNA at r < 0.01 is considered as a result of porphyrin redistribution in the melting process.  相似文献   

15.
A new 1,2-diamine ligand, N,N-bis(2-hydroxyethyl)stilbenediamine (L), has been prepared by reduction of the condensation product of benzaldehyde with 2-aminoethanol with Al amalgam. Mononuclear complexes of the [CuL(H2O)]X2 type where X=Cl or AcO with CuII and PdLCl2 with palladium(II) have been prepared and characterized by elemental analysis and i.r., u.v.–vis. or 1H-n.m.r. spectroscopy.  相似文献   

16.
The aqueous reaction of Mn(II) and NaCN leads to the isolation of the 3-D Prussian blue analogue (PBA) Na(2)Mn[Mn(CN)(6)]·2H(2)O (1·H(2)O), which under careful dehydration forms 1. 1·H(2)O is monoclinic [P2(1)/n, a = 10.66744(32) ?, b = 7.60223(23) ?, c = 7.40713(22) ?, β = 92.4379(28)°], while 1 is rhombohedral [R ?3, a = 6.6166(2) ?, c = 19.2585(6) ?], and both structures are atypical for PBAs, which are typically face centered cubic. Most notably, the average ∠Mn-N-C angles are 165.3(3)° and 142.4(4)° for 1·H(2)O and 1, respectively, which are significantly reduced from linearity. This is attributed to the ionic nature of high-spin Mn(II) accommodating a reduced ∠Mn-N-C to minimize void space. Both 1 and 1·H(2)O magnetically order as ferrimagnets below their ordering temperature, T(c), of 58 and 30 K, respectively, as determined from the average of several independent methods. 1 and 1·H(2)O are hard magnets with 5 K coercive fields of 15,300 and 850 Oe, and remnant magnetizations of 9075 and 102 emu·Oe/mol, respectively. These data along with previous T(c)'s reported for related materials reveal that T(c) increases as the ∠Mn-N-C deviates further from linearity. Hence, the bent cyanide bridges play a crucial role in the superexchange mechanism by increasing the coupling via shorter Mn(II)···Mn(II) separations, and perhaps an enhanced overlap.  相似文献   

17.
Neutral complexes of Cu(II), Ni(II), Co(II), and Zn(II) have been synthesized from the oxamide-based ligand derived from leucine and diethyloxalate. The structural features have been deduced from their microanalytical, IR, UV/Vis, mass, 1H and 13C NMR spectral data. The Co(II) and Ni(II) chelates have octahedral geometries and the Cu(II) chelate is a square-pyramidal geometry. The non-electrolytic and monomeric nature of the complexes is shown by their magnetic susceptibility and low conductance data. The biological activities of the ligand and its metal chelates against gram-positive and negative bacteria and fungi are also reported. All the compounds are antimicrobially active and show higher activity than the free ligand.  相似文献   

18.
A project related to the crystal engineering of hydrogen-bonded coordination complexes has been initiatied and some of our first results are presented here. The compounds [Mn(DMU)6](ClO4)2 (1), [Ni(DMU)6](ClO4)2 (2), [Cu(OClO3)2(DMU)4] (3) and [Zn(DMU)6](ClO4)2 (4) have all been prepared from the reaction of N,N-dimethylurea (DMU) and the appropriate hydrated metal perchlorate salt. Crystal structure determinations of the four compounds demonstrate the existence of [M(DMU)6]2+ cations and ClO4 counterions in (1), (2) and (4), whereas in (3) monodentate coordination of the perchlorate groups leads to molecules. The [M(DMU)6]2+ cations and ClO4 anions self-assemble to form a hydrogen-bonded one-dimensional (1D) architecture in (1) and different 2D hydrogen-bonded networks in (2) and (4). The hydrogen bonding functionalities on the molecules of (3) create a 2D structure. The complexes were also characterised by room-temperature effective magnetic moments and i.r. studies. The data are discussed in terms of the nature of bonding and the known structures.  相似文献   

19.
Two new isostructural copper(II)–zinc(II) complexes, [CuZnLBr2] (1) and [CuZnLCl2] (2) (H2L = N,N′-bis(4-methoxysalicylidene)cyclohexane-1,2-diamine), have been synthesized and characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray diffraction. Both complexes crystallize in the P-1 space group. The Cu in each complex is four-coordinate square planar with two imines and two phenolates of L. The Zn in each complex is four-coordinate tetrahedral with two phenolates of L and two halides (Br for 1 and Cl for 2). The superoxide dismutase (SOD) activity of the complexes indicates that both complexes are rudimentary models for SOD.  相似文献   

20.
Summary Cobalt(II) and copper(II) complexes of the title ligand, TCEC, as well as a cobalt(II) complex ofN,N,N",N'-tetra (1-methyl-2-cyanoethyl)-1,4,8,11-tetraazacyclotetradecane, TMCEC, have been isolated and spectrally characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号