首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this research were to prepare and characterize inclusion complex of Ezetimibe (EZE) with cyclodextrins (β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HPβ-CD)) and to study the effect of complexation on the dissolution rate of EZE, a water insoluble drug. Phase solubility curve was classified as A P -type for both cyclodextrins, indicating the 2:1 stoichiometric ratio for β-CD–EZE and HPβ-CD – EZE inclusion complexes. The inclusion complexes in the molar ratio of 2:1 (β-CD–EZE and HPβ-CD–EZE) were prepared by various methods such as kneading, coevaporation and physical mixing. The molecular behaviors of drug in all samples were characterized by fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) studies. The results of these studies indicated that complex prepared by kneading and coevaporation methods showed inclusion of the EZE molecule into the cyclodextrins cavities. The highest improvement in in-vitro dissolution profiles was observed in complex prepared with hydroxypropyl-β-cyclodextrin using co-evaporation method. Mean dissolution time and similarity factor indicated significant difference between the release profiles of EZE from complexes and physical mixtures and from pure EZE.  相似文献   

2.
The inclusion behaviour of β-cyclodextrin (βCD) was studied toward Cefdinir (CEF) in order to enhance the solubility and dissolution rate, following cyclodextrin complexation. Drug cyclodextrin solid systems were prepared by conventional methods of kneading (KN), co-evaporation (CE), spray drying (SD) and with a novel approach of microwave irradiation (MWI). The formation of inclusion complexes with βCD in the solid state, were confirmed by Differential scanning calorimetry (DSC), Fourier Transform Infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) studies, and comparative studies on the in vitro dissolution of CEF were carried out. Characterization of binary system by DSC, FTIR and SEM indicated that SD and MWI method resulted in formation of true complexes. Binary systems showed significant increase in dissolution rate as compared to plain drug. Amongst the binary systems MWI products were prepared in least time with better yield and highest dissolution rate.  相似文献   

3.
In the present study influence of nature of selected cyclodextrins (CDs) and of methods of preparation of drug–CD complexes on the oral bioavailability, in vitro dissolution studies and pharmacodynamic activity of a sparingly water soluble drug rosuvastatin (RVS) was investigated. Phase solubility studies were conducted to find the interaction of RVS with β-CD and its derivatives, which indicated the formation of 1:1 stoichiometric inclusion complex. The apparent stability constant (K1:1) calculated from phase solubility diagram were in the rank order of β-CD < hydroxypropyl-β-cyclodextrin (HP-β-CD) < randomly methylated-β-cyclodextrin (RM-β-CD). Equimolar drug–CD solid complexes prepared by different methods were characterized by the Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). FTIR study demonstrated the presence of intermolecular hydrogen bonds and ordering of the molecule between RVS and CDs in inclusion complexes. DSC and XRD analysis confirmed formation of inclusion complex by freeze dried method with HP-β-CD and RM-β-CD. Aqueous solubility and dissolution studies indicated improved dissolution rates of prepared complexes in comparison with drug alone. Moreover, CD complexes demonstrated of significant improvement in reducing total cholesterol and triglycerides levels as compared to pure drug. However the in vivo results only partially agreed with those obtained from phase solubility studies.  相似文献   

4.
In this work, we illustrate the usefulness of cyclodextrins, namely, methyl-β-cyclodextrin (MβCD), an amorphous, methylated derivative of the natural β-cyclodextrin, as a tool to form an inclusion complex with Valsartan (VAL), a poorly water soluble drug. The phase solubility study showed AL type of curve with slope less than one indicating the formation of complexes in 1:1 molar ratio of drug and CD. The stability constant was found to be 538.14 ± 5.4 Mole?1. Solid binary systems between VAL and MβCD were prepared experimentally in a stoichiometry 1:1 by different techniques (physical mixing, kneading, co-evaporation). Afterward these products were characterized by Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), Scanning electron microscopy (SEM) and 1H Nuclear magnetic resonance study (1H NMR). The results obtained suggested that co-evaporation methods yield a higher degree of amorphous entities suggesting the formation of inclusion complex between VAL and MβCD. The dissolution of VAL from the binary systems was studied to select the most appropriate system for the formulation development. It was concluded that the preparation technique played an important role in the dissolution behavior of the drug and the inclusion complex between VAL and MβCD obtained by co-evaporation method allowed better performance.  相似文献   

5.
Ketoconazole (KZ) is an imidazole antifungal agent which is administered topically and also orally. KZ is practically insoluble in water. Vaginal candidiasis is a common condition and up to 75% of all women have at least one episode of this infection during their lifetime. The aim of study was to prepare KZ/β-cyclodextrin (β-CD) complex to improve the physicochemical properties of KZ and to investigate the possibility of preparing vaginal suppositories with the complexes. A linear increase in KZ solubility as a function of β-CD concentration was verified using the phase-solubility diagram. The resulting diagram was classified as AL-type, is generally related to the formation of a soluble complex. Complexes were prepared in a 1:1 molar ratio by different methods, namely freeze-drying, spray-drying, co-evaporation and kneading. Characterization of the complexes prepared was performed by practical yield %, aqueous solubility, active agent amount analyses, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffractometry (PXRD) and 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. Characterization studies provided additional evidences of complexation. The paddle method defined in USP31 was used in in vitro dissolution experiments on the prepared vaginal suppositories. It was found that solubility enhancement by preparing KZ/β-CD complexes depends on the type of the preparation method. Dissolution of KZ from complexes was found to be faster than the active agent and the commercial suppositories. This result may be attributed to the interactions between β-CD and active agent, high energetic amorphous state and decrease in the interfacial tension between insoluble active agent and dissolution media.  相似文献   

6.
The purpose of this study was to explore the utility of hydroxypropyl-β-cyclodextrin (HP-β-CD) systems in forming inclusion complexes with the anti-rheumatic or anti-arthritic drug, etodolac (EDC), in order to overcome the limitation of its poor aqueous solubility. This inclusion system achieved high solubility for the hydrophobic molecule. The physical and chemical properties of each inclusion compound were investigated. Complexes of EDC with HP-β-CD were obtained using the kneading and co-evaporation techniques. Solid state characterization of the products was carried out using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), powder X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Studies in the solution state were performed using UV-Vis spectrophotometry and 1H-NMR spectroscopy. Phase solubility profiles with HP-β-CD employed was found to be AL type. Stability constants (Kc) from the phase solubility diagrams were calculated indicating the formation of 1:1 inclusion complex. Stability studies in the solid state and in liquid state were performed; the possible degradation by RP-HPLC was monitored. The dissolution studies revealed that EDC dissolution rate was improved by the formation of inclusion complexes.   相似文献   

7.
Fluconazole (FZ) is a triazole antifungal drug administered orally or intravenously. It is employed for the treatment of mycotic infections. However, the efficacy of FZ is limited with its poor aqueous solubility and low dissolution rate. One of the important pharmaceutical advantages of cyclodextrins is to improve pharmacological efficacy of drugs due to increasing their aqueous solubility. The aim of present study was to prepare an inclusion complex of FZ and β-cyclodextrin (β-CD) to improve the physicochemical and biopharmaceutical properties of FZ. The effects of β-CD on the solubility of FZ were investigated according to the phase solubility technique. Complexes were prepared with 1:1 M ratio by different methods namely, freeze-drying, spray-drying, co-evaporation and kneading. For the characterization of FZ/β-CD complex, FZ amount, practical yield %, thermal, aqueous solubility, XRD, FT-IR and NMR (1H and 13C) analysis were performed. In vitro dissolution from hard cellulose capsules containing FZ/β-CD complexes was compared to pure FZ and its commercial capsules and evaluated by f1 (difference) and f2 (similarity) factors. Paddle method defined in USP 31 together with high pressure liquid chromatographic method were used in in vitro dissolution experiments. It was found that solubility enhancement by FZ/β-CD complexes depends on the type of the preparation method. High release of active agent from hard cellulose capsules prepared with β-CD complexes compared to commercial capsules was attributed to the interactions between β-CD and active agent, high energetic amorphous state and inclusion complex formation.  相似文献   

8.
The objective of the present investigation was to study the effect of presence of choline dichloride (CDC) in β-cyclodextrin (β-CD) on in vitro dissolution of aceclofenac (AF) from molecular inclusion complexes. The molecular inclusion complexes of AF with β-CD coprecipitated with CDC in 1:1 and 1:2 M ratio were prepared using kneading method. In vitro dissolution of pure drug, physical mixtures, and cyclodextrin inclusion complexes (AF-β-CD-CDC) were carried out. Molecular inclusion complexes of aceclofenac with coprecipitated β-CD showed considerable increase in the dissolution rate in comparison with physical mixture and pure drug in 0.1 N HCl, pH 1.2 and phosphate buffer, pH, 7.4. Inclusion complexes with 1:2 M ratio showed maximum dissolution rate in comparison to other ratios. FTIR spectroscopy and differential scanning calorimetry studies indicated no interaction between AF and β-CD-CDC in complexes in solid state. Dissolution enhancement was attributed to the formation of water soluble inclusion complexes with the precipitated form of β-CD. The in vitro release from all the formulations was best described by first order kinetics (R 2 = 0.9354 and 0.9268 in 0.1 N HCl and phosphate buffer, respectively) followed by Higuchi release model (R 2 = 0.9029 and 0.9578 in 0.1 N HCl and phosphate buffer, respectively). In conclusion, dissolution of aceclofenac can be enhanced by using the β-CD-CDC coprecipitate as a host molecule.  相似文献   

9.
The objective of present research work was to formulate and evaluate topical gel containing tretinoin–cyclodextrin (CD) binary complex loaded into nanostructured lipid carriers (NLCs). Use of cyclodextrin and nanolipid carrier together in a system produced a synergistic effect by increasing the drug release and skin permeation, thus improving the overall therapeutic effect. Two different cyclodextrins i.e. β-CD and its water soluble polymeric derivative epichlorohydrin-β-cyclodextrin (EPI-β-CD) were used to obtain binary inclusion complex of drug-cyclodextrin (D-CD) systems by two different techniques (kneading and co-evaporation). The prepared solid complexes were characterized by FTIR, DSC, XRD etc. and the best system was selected for loading into nanolipid carriers. NLC comprising glyceryl mono stearate (GMS) and oleic acid were obtained by slightly modified emulsification evaporation method. Four different formulations of NLCs were suitability characterized for particle size, zeta potential, entrapment efficiency, drug loading and drug release. EPI-β-CD was found to be more effective than β-CD in enhancing solubility and dissolution properties of tretinoin. The most effective NLC formulation was incorporated into carbopol hydrogel which showed better permeation properties than that of the reference gel (0.1%).  相似文献   

10.
Rufinamide (RUF) was characterized in terms of cyclodextrin (CD) complexation in order to improve its aqueous solubility. Binary systems of RUF with three CDs—β-cyclodextrin (β-CD), randomly methylated-β-cyclodextrin (RAMEB) and sulfobutylether-β-cyclodextrin (SBE-β-CD)—were characterized with a wide variety of analytical techniques. Liquid state characterization was carried out by complementary techniques such as nuclear magnetic resonance spectroscopy (NMR), capillary electrophoresis (CE), mass spectrometry (MS) and phase solubility studies. The latter revealed that the stability of the complexes decreased in the order of RAMEB?>?β-CD?>?SBE-β-CD. AL-type diagrams were obtained in all cases, characteristic of 1:1 stoichiometry, with a maximum of over 15-fold increase in RUF solubility, when complexed with RAMEB. NMR Job plot and MS studies confirmed phase solubility results, regarding the binding stoichiometry. 1H NMR and 2D ROESY investigations revealed the inclusion of the triazole moiety of RUF, confirmed by molecular modeling. Solid state complexation in 1:1 molar ratio was carried out by kneading method and investigated by differential scanning calorimetry (DSC) and infrared spectroscopy (IR). Comparative dissolution studies indicated an over two-fold improvement in dissolution efficacy of the kneaded products, when compared to the pure drug. Results of the present study might pave the way for a drug formulation with improved bioavailability.  相似文献   

11.
Resibufogenin (RBG) is a natural medicinal ingredient with promising cardiac protection and antitumor activity. However, poor solubility and severe gastric mucosa irritation restrict its application in the pharmaceutical field. In this study, the inclusion complex of RBG with β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was prepared using the co-evaporation method, and the molar ratio of RBG to CD was determined to be approximately 1:2 by continuous variation plot for both CDs. The formation of inclusion complexes between RBG and each CD (RBG/β-CD and RBG/HP-β-CD) was evaluated by phase solubility study, Fourier transform infrared spectroscopy, and thin-layer chromatography. Powder X-ray diffraction and differential scanning calorimetry confirmed drug amorphization and encapsulation in the molecular cage for both CDs. Moreover, the inclusion complexes’ morphologies were observed using scanning electron microscopy. The dissolution rate of the inclusion complexes was markedly improved compared to that of RBG, and the complexes retained their antitumor activity, as shown in the in vitro cytotoxicity assay on a human lung adenocarcinoma cancer (A549) cell line. Moreover, less gastric mucosal irritation was observed for the inclusion complex. Thus, the inclusion complex should be considered a promising strategy for the delivery of poorly water-soluble anticancer agents, such as RBG.  相似文献   

12.
Terbinafine (TB) is an allylamine derivative used as oral and topical antifungal agent. The physicochemical properties of the complexes between TB and different cyclodextrins (CDs): α-CD, β-CD, hydroxypropylβ-CD, methylβ-CD and γ-CD, have been studied in pH 12 aqueous solutions at 25 °C and in the solid state. Different phase solubility profiles of TB in the presence of CDs have been obtained: AL type for TB with hydroxypropylβ-CD and γ-CD, AP type for the complexes with methylβ-CD and α-CD, while a BS profile was found for TB-β-CD. The apparent stability constants of the complexes were calculated at 25 °C from the phase solubility diagrams. The higher increase of TB solubility, up to 200-fold, together with the higher value of the stability constant were found for the complex with methylβ-CD. Solid systems of 1:1 drug:CD molar ratio were prepared and characterised using X-ray diffraction patterns, thermal analysis and FTIR spectroscopy. The coevaporation method can be considered the best method in preparing these solid complexes. The complexes of TB with natural CDs, except with α-CD, were crystalline, whereas the methyl and hydroxypropyl derivatives gave rise to amorphous phases. Dissolution rate studies have been performed with TB-β-CD and TB-HPβ-CD complexes, showing a positive influence of complexation on the drug dissolution.  相似文献   

13.
Aim of the present work was to investigate the effect of methyl-β-cyclodextrin (MβCD) on the solubility and dissolution rate of carvedilol (CAR), a drug used orally for the treatment of hypertension. Phase solubility studies showed an AL-type diagram indicating the formation of inclusion complex in 1:1 molar ratio. Solid binary systems of the drug with MβCD were prepared by various methods. Physicochemical characterizations were performed using Fourier Transformation Infrared Spectroscopy, Differential Scanning Calorimetry and powder X-Ray Diffractometry. It could be concluded that CAR can form inclusion complex with MβCD. The dissolution profiles of inclusion complexes were determined and compared with those of CAR alone and the physical mixture. The dissolution rate of CAR was increased by MβCD inclusion complexation remarkably.  相似文献   

14.
The solid Supramolecular complexes of β-cyclodextrin (β-CD) with ethylenediamine 1, diethylenetriamine 2 and triethylamine 3 were obtained and characterized using elemental analysis, powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and 1H nuclear magnetic resonance spectroscopy. Based on the results of elemental analysis and 1H NMR, the guest-host stoichiometries of the three solid complexes were determined to be 5:2 for 1-β-CD, 1:1 for 2-β-CD, and 1:3 for 3-β-CD. The yields were relative to the molar volume ratio of guest toβ-CD cavity, and increased in the order: 1-β-CD<2-β-CD<3-β-CD. X-ray diffraction patterns of the inclusion complexes gave very good exhibitions not only in location of diffraction peaks but also in shape and diffraction intensity of the peaks due to the intermolecular complexations betweenβ-CD and the guests. The formation of host-guest inclusion complexes exhibited obviously enhanced phase change temperatures of the complexed guests such as 1 and 3. The H-5 protons located at the narrower rim inside the CD cavity experienced a higher shift upon inclusion while all other protons experienced lower shifts.  相似文献   

15.
Interaction between norfloxacin and β-cyclodextrin (β-CD) in solution was characterized by immersion calorimetry studies and nuclear magnetic resonance. 1H-NMR studies suggest that the pyperazine group of norfloxacin is the part of the molecule bound inside the β-CD cavity. Solid inclusion complexes of norfloxacin with β-cyclodextrin were prepared by freeze-drying in two different molar ratios, 1:1 and 1:2, and characterized by X-ray diffractometry and differential scanning calorimetry. Drug dissolution rate was improved by inclusion complexation and norfloxacin incompatibility with metal cations (Mg2+, Al3+) was reduced.  相似文献   

16.
The formation of inclusion complexes between S-(?)-equol (SEq) and cyclodextrins (CDs) was investigated. The binding constant (Kc) of the SEq/sulfobutylether-β-cyclodextrin (SBE-β-CD) inclusion complex was determined to be 1600 L/mol based on UV data. The phenyl ring of the SEq molecule was found to be inserted from the secondary hydroxyl face of the SBE-β-CD as evidenced from 1H–1H rotating frame nuclear Overhauser effect spectroscopy (ROESY) NMR. The thermal properties of the solid SEq/SBE-β-CD inclusion complexes prepared by physical mixing, kneading and freeze-drying methods were studied by differential scanning calorimetry. For the solid complex obtained by the freeze-drying method, the endothermic peak corresponding to the melting point of SEq disappeared. The solid SEq/SBE-β-CD complexes exhibited a high score in antioxidant activity evaluation tests compared to SEq alone. Dissolution test revealed that the solid complex obtained by freeze-drying method had improved dissolution of SEq.  相似文献   

17.
The solubility of α-lipoic acid (LA) with the addition of modified cyclodextrins was investigated using the solubility method. The solubility of LA in the presence of β-cyclodextrin (β-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD), mono-6-O-glucopyranosyl-β-cyclodextrin (mono-G1-β-CD), methyl-β-cyclodextrin (Me-β-CD), 2,6-di-O-methyl-β-cyclodextrin (DM-β-CD), and sulfobutylether-β-cyclodextrin (SBE-β-CD) was higher than that of LA itself. In particular, the solubility of LA in the presence of SBE-β-CD was 20 times higher than that of LA alone. The structure of the inclusion complex of SBE-β-CD and LA in aqueous solution was examined by 1H-1H ROESY NMR spectroscopy. The 1,2-dithiolane moiety of LA was included from the secondary hydroxyl face of SBE-β-CD. The solid complexes of LA and SBE-β-CD were prepared by the kneading and freeze-drying methods. Formation of the solid complexes was confirmed by X-ray diffraction patterns (XRD), differential scanning calorimetry (DSC), and infrared spectroscopy (IR). The kneading and freeze-drying methods were successful for obtaining the solid inclusion complexes with improved thermal stability.  相似文献   

18.
The physicochemical properties and dissolution profile of zaleplon (ZPN) β-cyclodextrin (βCD) inclusion complex were investigated. The phase solubility profile of ZPN with β-cyclodextrin was classified as AL-type. Stability constant with 1:1 molar ratio was calculated from the phase solubility diagram and the aqueous solubility of ZPN was found to be enhanced by 714% (p < 0.001) for β-cyclodextrin. Binary systems of ZPN with βCD were prepared by kneading method. The solid-state properties of complex were characterized by differential scanning calorimetry, Fourier transformation-infrared spectroscopy and powder X-ray diffractometry. It could be concluded that ZPN could form inclusion complex with β-cyclodextrin. The dissolution profile of inclusion complex was determined and compared with those of ZPN alone and its physical mixture. The dissolution rate of ZPN was significantly increased by complexation with βCD, as compared with pure drug and physical mixture.  相似文献   

19.
The objective of this research was to improve the aqueous solubility, dissolution rate and, consequently, bioavailability of diacerein, along with avoiding its side effect of diarrhea, by complexation with β-cyclodextrin (β-CD) and HP-β-cyclodextrin (HP-β-CD). Phase solubility curve was classified as an AN type for both the CDs, which indicated formation of complex of diacerein with β-CD and HP-β-CD in 1:1 stoichiometry and demonstrating that both CDs are proportionally less effective at higher concentrations. The complexes were prepared by kneading method and were evaluated to study the effect of complexation on aqueous solubility and rate of dissolution in phosphate buffer (pH 6.8). Based on the dissolution profile HP-β-CD was selected for preparing fast disintegrating tablet of diacerein which was compared with marketed formulation (MF-J). The HP-β-CD complex was probed for Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction studies which evidenced stable complex formation and increase in amorphousness of diacerein in complex. In brief, the characterization studies confirmed the inclusion of diacerein within the non-polar cavity of HP-β-CD. HP-β-CD complex showed improved in vitro drug release profile compared to pure drug and similar to that of marketed formulation respectively.  相似文献   

20.
A tricyclic, piperidine derivative of antihistamines, loratadine, which belongs in class II of the Biopharmaceutical Classification System, was investigated. It is an ionizable drug, whose solubility depends on the gastrointestinal pH, and the bioavailability is therefore very variable. The aim of this work was to enhance the dissolution and make the solubility of loratadine independent of pH. Inclusion complexes were prepared between loratadine and dimethyl-β-cyclodextrin in two different molar ratios by three techniques (physical mixing, kneading and spray-drying). The formation and physicochemical properties of the inclusion complexes were investigated by means of dissolution tests, thermal analysis and Fourier Transform Infrared spectroscopy. The instrumental examinations proved the presence of partial or total complexes depending on the preparation method and molar ratio, which resulted in better dissolution. For some compositions and preparation methods, the application of this cyclodextrin made the solubility of loratadine independent of pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号