首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The significance of conical intersections in photophysics, photochemistry, and photodissociation of polyatomic molecules in gas phase has been demonstrated by numerous experimental and theoretical studies. Optimization of conical intersections of small- and medium-size molecules in gas phase has currently become a routine optimization process, as it has been implemented in many electronic structure packages. However, optimization of conical intersections of small- and medium-size molecules in solution or macromolecules remains inefficient, even poorly defined, due to large number of degrees of freedom and costly evaluations of gradient difference and nonadiabatic coupling vectors. In this work, based on the sequential quantum mechanics and molecular mechanics (QM/MM) and QM/MM-minimum free energy path methods, we have designed two conical intersection optimization methods for small- and medium-size molecules in solution or macromolecules. The first one is sequential QM conical intersection optimization and MM minimization for potential energy surfaces; the second one is sequential QM conical intersection optimization and MM sampling for potential of mean force surfaces, i.e., free energy surfaces. In such methods, the region where electronic structures change remarkably is placed into the QM subsystem, while the rest of the system is placed into the MM subsystem; thus, dimensionalities of gradient difference and nonadiabatic coupling vectors are decreased due to the relatively small QM subsystem. Furthermore, in comparison with the concurrent optimization scheme, sequential QM conical intersection optimization and MM minimization or sampling reduce the number of evaluations of gradient difference and nonadiabatic coupling vectors because these vectors need to be calculated only when the QM subsystem moves, independent of the MM minimization or sampling. Taken together, costly evaluations of gradient difference and nonadiabatic coupling vectors in solution or macromolecules can be reduced significantly. Test optimizations of conical intersections of cyclopropanone and acetaldehyde in aqueous solution have been carried out successfully.  相似文献   

2.
A quantum mechanics/molecular mechanics (QM/MM) implementation that uses the Gaussian electrostatic model (GEM) as the MM force field is presented. GEM relies on the reproduction of electronic density by using auxiliary basis sets to calculate each component of the intermolecular interaction. This hybrid method has been used, along with a conventional QM/MM (point charges) method, to determine the polarization on the QM subsystem by the MM environment in QM/MM calculations on 10 individual H(2)O dimers and a Mg(2+)-H(2)O dimer. We observe that GEM gives the correct polarization response in cases when the MM fragment has a small charge, while the point charges produce significant over-polarization of the QM subsystem and in several cases present an opposite sign for the polarization contribution. In the case when a large charge is located in the MM subsystem, for example, the Mg(2+) ion, the opposite is observed at small distances. However, this is overcome by the use of a damped Hermite charge, which provides the correct polarization response.  相似文献   

3.
Combined ab initio quantum mechanical and molecular mechanical calculations have been widely used for modeling chemical reactions in complex systems such as enzymes, with most applications being based on the determination of a minimum energy path connecting the reactant through the transition state to the product in the enzyme environment. However, statistical mechanics sampling and reaction dynamics calculations with a combined ab initio quantum mechanical (QM) and molecular mechanical (MM) potential are still not feasible because of the computational costs associated mainly with the ab initio quantum mechanical calculations for the QM subsystem. To address this issue, a reaction path potential energy surface is developed here for statistical mechanics and dynamics simulation of chemical reactions in enzymes and other complex systems. The reaction path potential follows the ideas from the reaction path Hamiltonian of Miller, Handy and Adams for gas phase chemical reactions but is designed specifically for large systems that are described with combined ab initio quantum mechanical and molecular mechanical methods. The reaction path potential is an analytical energy expression of the combined quantum mechanical and molecular mechanical potential energy along the minimum energy path. An expansion around the minimum energy path is made in both the nuclear and the electronic degrees of freedom for the QM subsystem internal energy, while the energy of the subsystem described with MM remains unchanged from that in the combined quantum mechanical and molecular mechanical expression and the electrostatic interaction between the QM and MM subsystems is described as the interaction of the MM charges with the QM charges. The QM charges are polarizable in response to the changes in both the MM and the QM degrees of freedom through a new response kernel developed in the present work. The input data for constructing the reaction path potential are energies, vibrational frequencies, and electron density response properties of the QM subsystem along the minimum energy path, all of which can be obtained from the combined quantum mechanical and molecular mechanical calculations. Once constructed, it costs much less for its evaluation. Thus, the reaction path potential provides a potential energy surface for rigorous statistical mechanics and reaction dynamics calculations of complex systems. As an example, the method is applied to the statistical mechanical calculations for the potential of mean force of the chemical reaction in triosephosphate isomerase.  相似文献   

4.
The combination of quantum mechanics (QM) with molecular mechanics (MM) offers a route to improved accuracy in the study of biological systems, and there is now significant research effort being spent to develop QM/MM methods that can be applied to the calculation of relative free energies. Currently, the computational expense of the QM part of the calculation means that there is no single method that achieves both efficiency and rigor; either the QM/MM free energy method is rigorous and computationally expensive, or the method introduces efficiency-led assumptions that can lead to errors in the result, or a lack of generality of application. In this paper we demonstrate a combined approach to form a single, efficient, and, in principle, exact QM/MM free energy method. We demonstrate the application of this method by using it to explore the difference in hydration of water and methane. We demonstrate that it is possible to calculate highly converged QM/MM relative free energies at the MP2/aug-cc-pVDZ/OPLS level within just two days of computation, using commodity processors, and show how the method allows consistent, high-quality sampling of complex solvent configurational change, both when perturbing hydrophilic water into hydrophobic methane, and also when moving from a MM Hamiltonian to a QM/MM Hamiltonian. The results demonstrate the validity and power of this methodology, and raise important questions regarding the compatibility of MM and QM/MM forcefields, and offer a potential route to improved compatibility.  相似文献   

5.
The calculation of binding affinities for flexible ligands has hitherto required the availability of reliable molecular mechanics parameters for the ligands, a restriction that can in principle be lifted by using a mixed quantum mechanics/molecular mechanics (QM/MM) representation in which the ligand is treated quantum mechanically. The feasibility of this approach is evaluated here, combining QM/MM with the Poisson-Boltzmann/surface area model of continuum solvation and testing the method on a set of 47 benzamidine derivatives binding to trypsin. The experimental range of the absolute binding energy (DeltaG = -3.9 to -7.6 kcal/mol) is reproduced well, with a root-mean-square (RMS) error of 1.2 kcal/mol. When QM/MM is applied without reoptimization to the very different ligands of FK506 binding protein the RMS error is only 0.7 kcal/mol. The results show that QM/MM is a promising new avenue for automated docking and scoring of flexible ligands. Suggestions are made for further improvements in accuracy.  相似文献   

6.
7.
Quantum mechanical/molecular mechanical (QM/MM) free energy calculation presents a significant challenge due to an excessive number of QM calculations. A useful approach for reducing the computational cost is that based on the mean field approximation to the QM subsystem. Here, we describe such a mean-field QM/MM theory for electronically polarizable systems by starting from the Hartree product ansatz for the total system and invoking a variational principle of free energy. The MM part is then recast to a classical polarizable model by introducing the charge response kernel. Numerical test shows that the potential of mean force (PMF) thus obtained agrees quantitatively with that obtained from a direct QM/MM calculation, indicating the utility of self-consistent mean-field approximation. Next, we apply the obtained method to prototypical reactions in several qualitatively different solvents and make a systematic comparison of polarization effects. The results show that in aqueous solution the PMF does not depend very much on the water models employed, while in nonaqueous solutions the PMF is significantly affected by explicit polarization. For example, the free energy barrier for a phosphoryl dissociation reaction in acetone and cyclohexane is found to increase by more than 10 kcal/mol when switching the solvent model from an empirical to explicitly polarizable one. The reason for this is discussed based on the parametrization of empirical nonpolarizable models.  相似文献   

8.
The determination of reaction paths for enzyme systems remains a great challenge for current computational methods. In this paper we present an efficient method for the determination of minimum energy reaction paths with the ab initio quantum mechanical/molecular mechanical approach. Our method is based on an adaptation of the path optimization procedure by Ayala and Schlegel for small molecules in gas phase, the iterative quantum mechanical/molecular mechanical (QM/MM) optimization method developed earlier in our laboratory and the introduction of a new metric defining the distance between different structures in the configuration space. In this method we represent the reaction path by a discrete set of structures. For each structure we partition the atoms into a core set that usually includes the QM subsystem and an environment set that usually includes the MM subsystem. These two sets are optimized iteratively: the core set is optimized to approximate the reaction path while the environment set is optimized to the corresponding energy minimum. In the optimization of the core set of atoms for the reaction path, we introduce a new metric to define the distances between the points on the reaction path, which excludes the soft degrees of freedom from the environment set and includes extra weights on coordinates describing chemical changes. Because the reaction path is represented by discrete structures and the optimization for each can be performed individually with very limited coupling, our method can be executed in a natural and efficient parallelization, with each processor handling one of the structures. We demonstrate the applicability and efficiency of our method by testing it on two systems previously studied by our group, triosephosphate isomerase and 4-oxalocrotonate tautomerase. In both cases the minimum energy paths for both enzymes agree with the previously reported paths.  相似文献   

9.
Using broken-symmetry unrestricted density functional theory quantum mechanical (QM) methods in concert with mixed quantum mechanics/molecular mechanics (QM/MM) methods, the hydroxylation of methane and substituted methanes by intermediate Q in methane monooxygenase hydroxylase (MMOH) has been quantitatively modeled. This protocol allows the protein environment to be included throughout the calculations and its effects (electrostatic, van der Waals, strain) upon the reaction to be accurately evaluated. With the current results, recent kinetic data for CH3X (X = H, CH3, OH, CN, NO2) substrate hydroxylation in MMOH (Ambundo, E. A.; Friesner, R. A.; Lippard, S. J. J. Am. Chem. Soc. 2002, 124, 8770-8771) can be rationalized. Results for methane, which provide a quantitative test of the protocol, including a substantial kinetic isotope effect (KIE), are in reasonable agreement with experiment. Specific features of the interaction of each of the substrates with MMO are illuminated by the QM/MM modeling, and the resulting effects upon substrate binding are quantitatively incorporated into the calculations. The results as a whole point to the success of the QM/MM methodology and enhance our understanding of MMOH catalytic chemistry. We also identify systematic errors in the evaluation of the free energy of binding of the Michaelis complexes of the substrates, which most likely arise from inadequate sampling and/or the use of harmonic approximations to evaluate the entropy of the complex. More sophisticated sampling methods will be required to achieve greater accuracy in this aspect of the calculation.  相似文献   

10.
We investigate the effect of systematically applying molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) to docked poses in an attempt to improve the correspondence between theoretical prediction and experimental observation. The proposed scheme involves running a short time scale MD simulation on a docked ligand pose (and any known structurally important crystal structure waters in the active site), followed by QM/MM minimization. Both of these steps are relatively fast for moderately sized ligands; longer time scale MD involving the protein is not found to improve the results. The final binding energy is given in terms of the QM/MM total energy, a van der Waals correction, and a term to account for desolvation effects. This methodology is first tested with a trypsin inhibitor, for which we establish the importance of running MD before reoptimizing with QM/MM. The method is then applied to cytochrome c peroxidase using a set of binders and decoys. In this example, the proposed methodology affords much better discrimination between binders and decoys than the traditional docking approach used. For both systems presented, application of this protocol results in a significantly better energetic ranking and a smaller root mean squared deviation from known crystallographic ligand poses. This work highlights the importance of including polarization effects through QM/MM and of sampling with MD to refine a set of initial docked poses.  相似文献   

11.
The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009 , 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self‐consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree–Fock–Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self‐consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave‐function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
The molecular modeling of structural forms of the green fluorescent protein (GFP) with the Ser65Thr single-site mutation was performed by the quantum mechanics/molecular mechanics (QM/MM) method. Two model systems were constructed based on the crystallographic structure from the Protein Data Bank (PDB entry code 1EMA.) The model systems differ in the initial protonation state of the side chain of the amino acid residue Glu222 near the chromophore. The atomic coordinates of the protein macromolecule corresponding to the equilibrium geometric configurations were determined by total energy minimization using the QM/MM method within the density functional theory approximation PBE0/cc-pVDZ for the quantum subsystem that consists of the chromophore, a water molecule, and the side chains of Arg96, Glu222, and Ser205, and with the parameters of the AMBER force field for the molecular mechanics subsystem. In the analysis of the results, particular attention was given to the hydrogen bond redistribution in the chromophore-containing region of the protein caused by a change in the protonation state of the chromophore. The results obtained from the model containing the initially protonated side chain of Glu222 suggest a new interpretation of the photophysical processes in the green fluorescent protein.  相似文献   

13.
14.
The equilibrium geometric configurations of the enzyme-substrate complex for guanosine triphosphate hydrolysis by elongation factor EF-Tu calculated using two theoretical approaches, a combined quantum mechanics/molecular mechanics (QM/MM) method and a molecular dynamics method, are compared. The reaction complex geometry determined by the QM/MM method is consistent with the accepted reaction mechanism, whereas, in the enzyme-substrate structure predicted by the molecular dynamics method with the CHARMM force field, the relative positions of the nucleophilic reagent (water molecules) and the base (a histidine side chain) do not correspond to the optimal reagent arrangement.  相似文献   

15.
We present a study of the interaction between a phenol molecule and an aerosol particle. The aerosol particle is represented by a cluster of 128 water molecules. Using a classical approach, we present interaction energy surfaces for different relative distances and for three orientations of phenol relative to the particle. From the energy surfaces we find the reaction pathways with the largest interaction between the molecule and the particle. We use a quantum mechanics/molecular mechanics (QM/MM) method to calculate a potential energy curve for each reaction path. Coupled cluster methods are used for the part of the system described by quantum mechanics, while the part described by molecular mechanics is represented by a polarizable force field. We compare results obtained from the classical approach with the QM/MM results. Furthermore, we use the QM/MM results to calculate mass accommodation coefficients using a quantum-statistical (QM-ST) model and show how the mass accommodation coefficient depends on the relative orientation of phenol with respect to the aerosol particle.  相似文献   

16.
A quantum mechanics (QM)/molecular mechanics (MM)-based free energy perturbation (FEP) method, developed recently, provides most accurate estimation of binding affinities. The validity of the method was evaluated for a large set of diverse inhibitors for fructose 1,6-bisphosphatase (FBPase), a target enzyme for type-II diabetes mellitus. The validation set comprises of 22 important structurally different mutations. The calculated relative binding free energies using the QM/MM-based FEP method reproduce the experimental values with exceptional precision of less than ±0.5 kcal/mol. The CPU requirements for QM/MM-based FEP are about fivefold greater than conventional FEP methods, but it is superior in accuracy of predictions. In addition, the QM/MM-based FEP method eliminates the need for time-consuming development of MM force field parameters, which are frequently required for novel inhibitors described by MM. Future automation of the method and parallelization of the code for 128/256/512 cluster computers is expected to enhance the speed and increase its use for drug design and lead optimization. The present application of QM/MM-based FEP method for structurally diverse set of analogs serves to enhance the scope of FEP method and demonstrate the utility of QM/MM-based FEP method for its potential in drug discovery.  相似文献   

17.
18.
19.
Molecular fragmentation quantum mechanics (QM) calculations have been combined with molecular mechanics (MM) to construct the fragmentation QM/MM method for simulations of dilute solutions of macromolecules. We adopt the electrostatics embedding QM/MM model, where the low-cost generalized energy-based fragmentation calculations are employed for the QM part. Conformation energy calculations, geometry optimizations, and Born-Oppenheimer molecular dynamics simulations of poly(ethylene oxide), PEO(n) (n = 6-20), and polyethylene, PE(n) ( n = 9-30), in aqueous solution have been performed within the framework of both fragmentation and conventional QM/MM methods. The intermolecular hydrogen bonding and chain configurations obtained from the fragmentation QM/MM simulations are consistent with the conventional QM/MM method. The length dependence of chain conformations and dynamics of PEO and PE oligomers in aqueous solutions is also investigated through the fragmentation QM/MM molecular dynamics simulations.  相似文献   

20.
We explored water-assisted decompositions of formic acid in supercritical water in terms of local structure near reactant. A hybrid quantum mechanics/molecular mechanics (QM/MM) simulation used in this paper includes QM part as first solvation shell members around the reactant. A present QM/MM approach can simulate supercritical water solution with a reasonable computational load while keeping the simulation preciseness because a density functional theory of B3LYP/6-31+G(d) level was iterated at every 1000 Monte Carlo solute moves. The formic acid converts mainly decarboxylation by water-assisted mechanism, and the coordinated water molecules play an important role for understanding supercritical water density dependence of the reaction. We analyzed a contour map based on the solute–solvent interaction energy along with the reaction pathway. Coordinated water molecule restricted the dehydration pathway by means of hydrogen bond with formic acid, however, the coordinated water promotes the decarboxylation pathway by means of stabilization of the transition state structure with one catalytic water molecule. The contour map of the pair interaction energy along the reaction path elucidates the role of local structure on reactions in supercritical water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号