首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The H2O adsorption and dissociation on the Fe (100) surface with different precovered metals are studied by density functional theory. On both kinds of metal‐precovered surface, H2O molecules prefer adsorb on hollow sites than bridge and top sites. The impurity energy difference is proportional to the adsorption energy, but the adsorbates are not sensitive to the adsorption orientation and height relative to the surface. The Hirshfeld charge analysis shows that water molecules act as an electron donor while the surface Fe atoms act as an electron acceptor. The rotation and dissociation of H2O molecule occur on the Co‐ and Mn‐precovered surfaces. Some H2O molecules are dissociated into OH and H groups. The energy barriers are about 0.5 to 1.0 eV, whose are consistence with the experimental data. H2O molecules can be dissociated more easily at the top site on Co‐precovered surface 1 than that at bridge site on Mn‐precovered surface 2 because of the lower reaction barrier. The dispersion correction effects on the energies and adsorption configurations on Co‐precovered surface 1 were calculated by OBS + PW91. The dispersion contributions can improve a bit of the bond energy of adsorbates and weaken the hydrogen bond effect between adsorption molecules a little.  相似文献   

2.
The adsorption and dissociation of water on Cu2O(100) have been investigated by the density functional theory-generalized gradient approximation (DFT-GGA) method. The corresponding reaction energies, the structures of the transition states and the activation energies were determined. Calculations with and without dipole correction were both studied to get an understanding of the effect of the dipole moment on the adsorption and reaction of water on dipole surface Cu2O(100). When dipole correction was added, the adsorption energies of H2O on different sites generally decreased. The calculated activation barriers for HxO (x = 1, 2) dehydrogenation are 0.42 eV (1.01 eV without the dipole correction) and 1.86 eV, respectively, including the zero point energy correction. The first dehydrogenation outcome is energetically the most stable product.  相似文献   

3.
The dissociation mechanism of a water molecule at an oxygen vacancy on the MgO(100) surface was studied by using the embedded cluster method at the DFT/B3 LYP level, while the energetic information was refined by using the IMOMO method at the CCSD level. We found that a water molecule initially adsorbs on one of the magnesium ions surrounding the vacancy site with a binding energy of 15.98 kcal mol(-1). It then can dissociate on the MgO(100) surface along two possible dissociation pathways. One pathway produces a hydroxyl group bonded to the original magnesium with a proton filling the vacancy via a transition state with a barrier of 4.67 kcal mol(-1) relative to the adsorbed water configuration. The other pathway yields two hydroxy groups; the hydroxy group originally belonging to the water molecule fills the vacancy, while the hydrogen atom binds with the surface oxygen to form the other hydroxy group. Hydrogen atoms of these hydroxy groups can recombine to form a hydrogen molecule and the surface is healed. Although the barrier (14.09 kcal mol(-1)) of the rate-controlling step of the latter pathway is higher than that of the former one, the energies of all of its stationary points are lower than that of the separated reactants (H(2)O+cluster). The effects of water coadsorption are modeled by placing an additional water molecule near the active center, which suggests that the more coadsorbed water molecules further stabilize the hydroxy species and prevent the hydrogen molecule formation through the latter pathway. The results support the photoemission spectral evidence of water dissociation on the defective MgO(100) surface at low water coverage.  相似文献   

4.
The on-top dissociations of H2 on Ni(100) and Cu(100) are studied using a cluster approach. Correlation effects are accounted for through the use of CASSCF and CCI methods. The central metal atom is treated with all its electrons whereas the other cluster atoms are described by recently developed one electron ECP's. A molecular chemisorbed H2 state on nickel, similar to that recently observed experimentally, was identified in the cluster calculations and also for the triatomic NiH2. No such state was found on copper. The large differences found for the on top dissociation of H2 on nickel and copper are attributed solely to the difference in 3d orbital occupation. The parallel between the on top dissociation reaction on the cluster and the dissociation on a single atom is also studied. While the neutral triatomic NiH2 represents a qualitatively correct model in the nickel case, the negatively charged CuH 2 is required as a model in the copper case.  相似文献   

5.
We have performed first‐principle density functional theory calculations to investigate O2 dissociation on Pt(111) surface. A stepwise mechanism has been proposed. First, the adsorbed O2 dissociate into two oxygen atoms to get adsorbed on the nearby adsorption sites. Then, oxygen atoms further migrate to other more stable adsorption sites. The influence of solvent water on oxygen dissociation was also examined. The results show that the co‐adsorption of water has little impact on O2 dissociation. However, when water participates in the reaction, the energy barriers were reduced greatly. These results have very important significance to understand the mechanism of oxygen reduction. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
These contributions explore interaction modes between the methanethoil (CH3SH) molecule and the Fe(100) surface via implementing accurate density functional theory (DFT) calculations with the inclusion of van der Waals corrections. We consider three adsorption sites over the Fe(100) surface, namely, top(T), bridge (B), and hollow (H) sites as potential catalytic active sites for the molecular and dissociative adsorption of the CH3SH molecule. The molecular adsorption structures are found to occupy either B or T sites with former sites holding higher stability by 0.17 eV. The inclusion of van der Waals corrections refound to slightly alter adsorption energies. For instance, adsorption energies increased by ~ 0.18 and ~ 0.21 eV for B and T structure, respectively, in reference to values obtained by the plain generalized gradient approximation (GGA) functional. A stability ordering of the dissociation products was found to follow the sequence (CH4, S) > (CH3, S, H) > (─SCH3, H) > (─CH3, SH). The differential charge density distributions were examined to underpin prominent electronic contributing factors. Direct fission of C─S bond in the CH3SH molecule attains exothermic values in the range 2.0 to 2.1 eV. The most energetically favorable sites for the surface-mediated fission of the thiol's S─H bond correspond to the structure where the ─SCH3 and H are both situated on hollow sites with an adsorption energy of −2.43 eV. Overall, we found that inclusion of van der Waals functional to change the binding energies more noticeably in case of dissociative adsorption structures. The results presented herein should be instrumental in efforts that aim to design stand-alone Fe desulfurization catalysts.  相似文献   

7.
Density functional theory (DFT) quantum chemical calculations are used to determine adsorption energies and geometries of NO, NO(2), CO(2), and H(2)O on a barium oxide (100) surface. The study includes two adsorption geometries for NO(2). All species form thermodynamically stable adsorbates, and adsorption strength increases in the order NO(2) < H(2)O < NO 相似文献   

8.
以醋酸钯为前身盐, BaO-Al2O3复合氧化物为载体制备了系列负载型钯催化剂. BET和XRD表征结果表明,复合氧化物在制备过程中发生固相反应所生成的BaAl2O4 可以阻止γ-Al2O3向α相的转变,显著增强Al2O3的热稳定性.以甲烷燃烧为模型反应的评价结果表明, BaO的引入提高了催化剂上甲烷燃烧反应的活性和稳定性.  相似文献   

9.
Stimulated by recent experiments [B. E. Rocher-Casterline, L. C. Ch'ng, A. K. Mollner, and H. Reisler, J. Chem. Phys. 134, 211101 (2011)], we report quasiclassical trajectory calculations of the dissociation dynamics of the water dimer, (H(2)O)(2) (and also (D(2)O)(2)) using a full-dimensional ab initio potential energy surface. The dissociation is initiated by exciting the H-bonded OH(OD)-stretch, as done experimentally for (H(2)O)(2). Normal mode analysis of the fragment pairs is done and the correlated vibrational populations are obtained by (a) standard histogram binning (HB), (b) harmonic normal-mode energy-based Gaussian binning (GB), and (c) a modified version of (b) using accurate vibrational energies obtained in the Cartesian space. We show that HB allows opening quantum mechanically closed states, whereas GB, especially via (c), gives physically correct results. Dissociation of both (H(2)O)(2) and (D(2)O)(2) mainly produces either fragment in the bending excited (010) state. The H(2)O(J) and D(2)O(J) rotational distributions are similar, peaking at J = 3-5. The computations do not show significant difference between the ro-vibrational distributions of the donor and acceptor fragments. Diffusion Monte Carlo computations are performed for (D(2)O)(2) providing an accurate zero-point energy of 7247 cm(-1), and thus, a benchmark D(0) of 1244 ± 5 cm(-1).  相似文献   

10.
The potential energy surfaces of one, two, and three water molecule sequential adsorptions on the symmetrically chlorinated Si(100)-2 x 1 surface were theoretically explored with SIMOMM:MP2/6-31G(d). The first water molecule adsorption to the surface dimer requires a higher reaction barrier than the subsequent second water molecule adsorption. The lone pair electrons of the incoming water molecule nucleophilically attack the surface Si atom to which the leaving Cl group is bonded, yielding an S(N)2 type transition state. At the same time, the Cl abstracts the H atom of the incoming water molecule, forming a unique four-membered ring conformation. The second water molecule adsorption to the same surface dimer requires a much lower reaction barrier, which is attributed to the surface cooperative effect by the surface hydroxyl group that can form a hydrogen bond with the incoming second water molecule. The third water molecule adsorption exhibits a higher reaction barrier than the first and the second water molecule adsorption channels but yields a thermodynamically more stable product. In general, it is expected that the surface Si-Cl bonds can be subjected to the substitution reactions by water molecules, yielding surface Si-OH bonds, which can be a good initial template for subsequent surface chemical modifications. However, oversaturations can be a competing side reaction under severe conditions, suggesting that the precise control of surface kinetic environments is necessary to tailor the final surface characteristics.  相似文献   

11.
采用基于周期性密度泛函理论的平面波超软赝势的PBE+U方法,计算了CO吸附于Cu/N-TiO2(001)表面在无水及有水预吸附两种条件下不同位置的吸附能、最优化结构及态密度的变化.通过吸附能的比较,得出了CO在上述2个表面的最佳吸附位置、吸附结构及成键状态.通过态密度的变化分析了H2O对CO在表面吸附的影响.  相似文献   

12.
We have used the MINDO/SR molecular orbital method in order to model the migration of hydrogen atoms over a Ni(100) surface. The present calculations indicate the existence of two different states for adsorbed hydrogen, a result which is in agreement with experimental thermal desorption data and LEED . A detailed analysis of the electronic factors involved in this process is presented.  相似文献   

13.
The interaction of water with the non-polar ZnO(1010) surface has been studied by high resolution electron energy loss spectroscopy (HREELS) and thermal desorption spectroscopy (TDS). Adsorption of water at room temperature leads to the partial dissociation of water molecules giving rise to a well defined (2x1) superstructure. This observation was confirmed by the HREELS data which show the water-induced O-H stretching modes at 396 and 460 meV (3193 and 3709 cm-1) as well as the peak at 456 meV (3677 cm-1) arising from the OH species. The large red shift of the loss at 396 meV indicates unusually strong hydrogen bonding interactions of water to both neighbouring adsorbate molecules and the surface O atoms which are responsible for the partial dissociation of water molecules on the perfect ZnO(1010) surface.  相似文献   

14.
In this paper, we present a detailed mechanism for the complete decomposition of NH3 to NHx(a) (x = 0-2). Our calculations show that the initial decomposition of NH3 to NH2(a) and H(a) is facile, with a transition-state energy 7.4 kcal mol-1 below the vacuum level. Further decomposition to N(a) or recombination-desorption to NH3(g) is hindered by a large barrier of approximately 46 kcal mol-1. There are two plausible NH2 decomposition pathways: 1) NH2(a) insertion into the surface Si-Si dimer bond, and 2) NH2(a) insertion into the Si-Si backbond. We find that pathway (1) leads to the formation of a surface Si = N unit, similar to a terminal Si = Nt pair in silicon nitride, Si3N4, while pathway (2) leads to the formation of a near-planar, subsurface Si3N unit, in analogy to a central nitrogen atom (Nc) bounded to three silicon atoms in the Si3N4 environment. Based on these results, a plausible microscopic mechanism for the nitridation of the Si(100)-(2 x 1) surface by NH3 is proposed.  相似文献   

15.
Spin-polarized density functional calculations were used to investigate the interaction of atomic and molecular oxygen on the basal graphite surface at several atomic coverages. Two carbon layers were enough to represent the graphite surface. Oxygen atoms bind mainly over C?CC bridge sites forming an epoxide-like structure with a two carbon puckering and with adsorption energies in the 0.95?C1.28?eV range, depending on the atomic coverage. Molecular oxygen only shows a very weak physisorption. Atomic adsorption and diffusion along with atomic recombination via Eley?CRideal and Langmuir?CHinshelwood mechanisms were studied. All surfaces processes were activated with energy barriers that decreased for lower atomic coverages. Relaxation effects were non-negligible. A microkinetic model with six elementary surface processes was proposed to see the overall behaviour of several initial O/O2 mixtures flowing over a graphite surface at 300?C1,000?K. Thermal rate constants were derived from Density Functional Theory data and standard Transition State Theory. A very low steady-state atomic coverage (?????<?0.5%) was predicted, and also very low atomic recombination coefficients were observed (??O?<?5?×?10?4). The Eley?CRideal together with the adsorption and desorption processes was much more important than the Langmuir?CHinshelwood reaction.  相似文献   

16.
Detailed formaldehyde adsorption and dissociation reactions on Fe(100) surface were studied using first principle calculations and molecular dynamics (MD) simulations, and results were compared with available experimental data. The study includes formaldehyde, formyl radical (HCO), and CO adsorption and dissociation energy calculations on the surface, adsorbate vibrational frequency calculations, density of states analysis of clean and adsorbed surfaces, complete potential energy diagram construction from formaldehyde to atomic carbon (C), hydrogen (H), and oxygen (O), simulation of formaldehyde adsorption and dissociation reaction on the surface using reactive force field, ReaxFF MD, and reaction rate calculations of adsorbates using transition state theory (TST). Formaldehyde and HCO were adsorbed most strongly at the hollow (fourfold) site. Adsorption energies ranged from ?22.9 to ?33.9 kcal/mol for formaldehyde, and from ?44.3 to ?66.3 kcal/mol for HCO, depending on adsorption sites and molecular direction. The dissociation energies were investigated for the dissociation paths: formaldehyde → HCO + H, HCO → H + CO, and CO → C + O, and the calculated energies were 11.0, 4.1, and 26.3 kcal/mol, respectively. ReaxFF MD simulation results were compared with experimental surface analysis using high resolution electron energy loss spectrometry (HREELS) and TST based reaction rates. ReaxFF simulation showed less reactivity than HREELS observation at 310 and 523 K. ReaxFF simulation showed more reactivity than the TST based rate for formaldehyde dissociation and less reactivity than TST based rate for HCO dissociation at 523 K. TST‐based rates are consistent with HREELS observation. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Zusammenfassung Der Einbau von Lanthanoxid in die Erdalkalioxide CaO, SrO und BaO wurde auf röntgenographischem Wege untersucht. Bei 1000°C geglühte Proben zeigen folgende Löslichkeiten für La2O3: 1 Mol% in BaO, 2,4 Mol% in SrO und praktisch keine Löslichkeit in CaO.
The incorporation of lanthanum oxide into CaO, SrO and BaO was studied by X-ray methods. The incorporated quantities of La2O3 in samples decarbonized at 1000°C were found to be 1 mol% for BaO, 2.4 mol% for SrO and no solubility for CaO.


Mit 2 Abbildungen  相似文献   

18.
19.
A model for taking into account surface temperature effects in molecule-surface reactions is reported and applied to the dissociation of H(2) and D(2) on Cu(111). In contrast to many models developed before, the model constructed here takes into account the effects of static corrugation of the potential energy surface rather than energy exchange between the impinging hydrogen molecule and the surface. Such an approximation is a vibrational sudden approximation. The quality of the model is assessed by comparison to a recent density functional theory study. It is shown that the model gives a reasonable agreement with recently performed ab initio molecular dynamics calculations, in which the surface atoms were allowed to move. The observed broadening of the reaction probability curve with increasing surface temperature is attributed to the displacement of surface atoms, whereas the effect of thermal expansion is found to be primarily a shift of the curve to lower energies. It is also found that the rotational quadrupole alignment parameter is generally lowered at low energies, whereas it remains approximately constant at high energies. Finally, it is shown that the approximation of an ideal static surface works well for low surface temperatures, in particular for the molecular beams for this system (T(s) = 120 K). Nonetheless, for the state-resolved reaction probability at this surface temperature, some broadening is found.  相似文献   

20.
The structure and dynamics of the adsorbate CO(2)/KCl(100) from a diluted phase to a saturated monolayer have been investigated with He atom scattering (HAS), low-energy electron diffraction (LEED), and polarization dependent infrared spectroscopy (PIRS). Two adsorbate phases with different CO(2) coverage have been found. The low-coverage phase is disordered at temperatures near 80 K and becomes at least partially ordered at lower temperatures, characterized by a (2√2×√2)R45° diffraction pattern. The saturated 2D phase has a high long-range order and exhibits (6√2×√2)R45° symmetry. Its isosteric heat of adsorption is 26 ± 4 kJ mol(-1). According to PIRS, the molecules are oriented nearly parallel to the surface, the average tilt angle in the saturated monolayer phase is 10° with respect to the surface plane. For both phases, structure models are proposed by means of potential calculations. For the saturated monolayer phase, a striped herringbone structure with 12 inequivalent molecules is deduced. The simulation of infrared spectra based on the proposed structures and the vibrational exciton approach gives reasonable agreement between experimental and simulated infrared spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号