首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 698 毫秒
1.
Hayton TW  Wu G 《Inorganic chemistry》2008,47(16):7415-7423
The reaction of [UO 2(Ar 2nacnac)Cl] 2 [Ar 2nacnac = (2,6- (i)Pr 2C 6H 3)NC(Me)CHC(Me)N(2,6- (i)Pr 2C 6H 3)] with Na(RC(O)CHC(O)R) (R = Me, Ph, CF 3) in tetrahydrofuran results in the formation of UO 2(Ar 2nacnac)(RC(O)CHC(O)R) (R = Me, 1; Ph, 2; CF 3, 3), which can be isolated in moderate yields. The structures of 1 and 2 have been confirmed by X-ray crystallography, while the solution redox properties of 1- 3 have been measured by cyclic voltammetry. Complexes 1- 3 exhibit reduction features at -1.82, -1.59, and -1.39 V (vs Fc/Fc (+)), respectively, at a scan rate of 100 mV.s (-1). The decrease in the reduction potential follows the electron-withdrawing ability of each beta-diketonate ligand. Chemical reduction of 1 and 2 with Cp* 2Co in toluene yields [Cp* 2Co][UO 2(Ar 2nacnac)(RC(O)CHC(O)R)] (R = Me, 4; Ph, 5), while reduction of 3 with Cp 2Co provides [Cp 2Co][UO 2(Ar 2nacnac)(CF 3C(O)CHC(O)CF 3)] ( 6). Complexes 4- 6 have been fully characterized, while the solid-state molecular structure of 5 has also been determined. In contrast to the clean reduction that occurs with Cp* 2Co, reduction of 1 with sodium ribbon, followed by cation exchange with [NEt 4]Cl, produces [NEt 4][UO 2(Ar 2nacnac)(H 2CC(O)CH(O)CMe)] ( 7) in modest yield. This product results from the formal loss of H (*) from a methyl group of the acetylacetonate ligand. Alternately, complex 7 can be synthesized by deprotonation of 1 with NaNTMS 2 in good yield.  相似文献   

2.
Treatment of [UO(2)(Ar(2)nacnac)Cl](2) with 4 equiv. of Li(C(4)H(5)N(2)) results in the formation of a rare uranyl organometallic complex [Li(MeIm)][UO(μ-O)(Ar(2)nacnac)(μ-C,N-C(4)H(5)N(2))(2)] (2), in moderate yield. Reaction of 2 with 1 equiv. of MCl(2) (M = Fe, Co) yields the bimetallic complexes [MCl(MeIm)][UO(2)(Ar(2)nacnac)(μ-N,C-C(4)H(5)N(2))(2)] (M = Fe, 3; M = Co, 4).  相似文献   

3.
Addition of 1 or 2 molar equiv of Rbtp [Rbtp = 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine; R = Me, Pr ( n )] to UO 2(OTf) 2 in anhydrous acetonitrile gave the neutral compounds [UO 2(OTf) 2(Rbtp)] [R = Me ( 1), ( n )Pr ( 2)] and the cationic complexes [UO 2(Rbtp) 2][OTf] 2 [R = Me ( 3), Pr ( n ) ( 4)], respectively. No equilibrium between the mono and bis(Rbtp) complexes or between [UO 2(Rbtp) 2][OTf] 2 and free Rbtp in acetonitrile was detected by NMR spectroscopy. The crystal structures of 1 and 3 resemble those of their terpyridine analogues, and 3 is another example of a uranyl complex with the uranium atom in the unusual rhombohedral environment. In the presence of 1 molar equiv of Rbtp in acetonitrile, UO 2(NO 3) 2 was in equilibrium with [UO 2(NO 3) 2(Rbtp)] and the formation of the bis adduct was not observed, even with an excess of Rbtp. The X-ray crystal structures of [UO 2(NO 3) 2(Rbtp)] [R = Me ( 5), Pr ( n ) ( 6)] reveal a particular coordination geometry with seven coordinating atoms around the UO 2 fragment. The large steric crowding in the equatorial girdle forces the bidentate nitrate ligands to be almost perpendicular to the mean equatorial plane, inducing bending of the UO 2 fragment. The dinuclear oxo compound [U(CyMe 4btbp) 2(mu-O)UO 2(NO 3) 3][OTf] ( 7), which was obtained fortuitously from a 1:2:1 mixture of U(OTf) 4, CyMe 4btbp, and UO 2(NO 3) 2 [CyMe 4btbp = 6,6'-bis-(3,3,6,6-tetramethyl-cyclohexane-1,2,4-triazin-3-yl)-2,2'-bipyridine] is a very rare example of a mixed valence complex involving covalently bound U (IV) and U (VI) ions; its crystal structure also exhibits a seven coordinate uranyl moiety, with one bidentate nitrate group almost parallel to the UO 2 fragment. The distinct structural features of [UO 2(kappa (2)-NO 3) 2(Mebtp)], with its high coordination number and a noticeable bending of the UO 2 fragment, and of [UO 2(kappa (2)-NO 3)(kappa (1)-NO 3)(terpy)], which displays a classical geometry, were analyzed by Density Functional Theory, considering the bonding energy components and the molecular orbitals involved in the interaction between the uranyl, nitrate, and Mebtp or terpy moieties. The unusual geometry of the Mebtp derivative with the seven coordinating atoms around the UO 2 fragment was found very stable. In both the Mebtp and terpy complexes, the origin of the interaction appears to be primarily steric (Pauli repulsion and electrostatic); this term represents 62-63% of the total bonding energy while the orbital term contributes to about 37-38%.  相似文献   

4.
The addition of 1 equiv of HSiPh(3) to UO(2)((Ar)acnac)(2) ((Ar)acnac = ArNC(Ph)CHC(Ph)O; Ar = 3,5-(t)Bu(2)C(6)H(3)), in the presence of 1 equiv of B(C(6)F(5))(3), results in the formation of U(OSiPh(3))(OB{C(6)F(5)}(3))((Ar)acnac)(2) (1), via silylation of an oxo ligand and reduction of the uranium center. The addition of 1 equiv of Cp(2)Co to 1 results in a reduction to uranium(IV) and the formation of [Cp(2)Co][U(OSiPh(3))(OB{C(6)F(5)}(3))((Ar)acnac)(2)] (2) in 78% yield. Complexes 1 and 2 have been characterized by X-ray crystallography, while the solution-phase redox properties of 1 have been measured with cyclic voltammetry.  相似文献   

5.
Thiolate-bridged diruthenium complexes such as [Cp*RuCl(mu(2)-SR)(2)RuCp*Cl] (Cp* = eta(5)-C(5)Me(5); R = Me, (n)Pr, (i)Pr) and [Cp*RuCl(mu(2)-S(i)Pr)(2)RuCp*(OH(2))]OTf (OTf = OSO(2)CF(3)) promote the cycloaddition between propargylic alcohols and cyclic 1,3-dicarbonyl compounds to give either the corresponding 4,6,7,8-tetrahydrochromen-5-ones or 4H-cyclopenta[b]pyran-5-ones in high yields with complete regioselectivity. This catalytic cycloaddition provides a simple and one-pot synthetic protocol for a variety of substituted chromenones and cyclopenta[b]pyranones.  相似文献   

6.
Treatment of 0.5 equiv of [Cp*IrCl(2)](2) with 1/3-P(i)Pr(2)-2-S(t)Bu-indene afforded Cp*Ir(Cl)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (1) in 95% yield (Cp* = eta(5)-C(5)Me(5)). Addition of AgOTf or LiB(C(6)F(5))(4) x 2.5 OEt(2) to 1 gave [Cp*Ir(kappa(2)-3-P(i)Pr(2)-2-S-indene)](+)X(-) ([2](+)X(-); X = OTf, 78%; X = B(C(6)F(5))(4), 82%), which represent the first examples of isolable coordinatively unsaturated [Cp'Ir(kappa(2)-P,S)](+)X(-) complexes. Exposure of [2](+)OTf(-) to CO afforded [2 x CO](+)OTf(-) in 91% yield, while treatment of [2](+)B(C(6)F(5))(4)(-) with PMe(3) generated [2 x PMe(3)](+)B(C(6)F(5))(4)(-) in 94% yield. Treatment of 1 with K(2)CO(3) in CH(3)CN allowed for the isolation of the unusual adduct 3 x CH(3)CN (41% isolated yield), in which the CH(3)CN bridges the Lewis acidic Cp*Ir and Lewis basic indenide fragments of the targeted coordinatively unsaturated zwitterion Cp*Ir(kappa(2)-3-P(i)Pr(2)-2-S-indenide) (3). In contrast to the formation of [2 x CO](+)OTf(-), exposure of 3 x CH(3)CN to CO did not afford 3 x CO; instead, a clean 1:1 mixture of (kappa(2)-3-P(i)Pr(2)-2-S-indene)Ir(CO)(2) (4) and 1,2,3,4-tetramethylfulvene was generated. Treatment of [2](+)OTf(-) with Ph(2)SiH(2) resulted in the net loss of Ph(2)Si(OTf)H to give Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (5) in 44% yield. In contrast, treatment of [2](+)B(C(6)F(5))(4)(-) with Ph(2)SiH(2) or PhSiH(3) proceeded via H-Si addition across Ir-S to give the corresponding [Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-S(SiHPhX)-indene)](+)B(C(6)F(5))(4)(-) complexes 6a (X = Ph, 68%) or 6b (X = H, 77%), which feature a newly established S-Si linkage. Compound 6a was observed to effect net C-O bond cleavage in diethyl ether with net loss of Ph(2)Si(OEt)H, affording [Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-SEt-indene)](+)B(C(6)F(5))(4)(-) (7) in 77% yield. Furthermore, 6a proved capable of transferring Ph(2)SiH(2) to acetophenone, with concomitant regeneration of [2](+)B(C(6)F(5))(4)(-); however, [2](+)X(-) did not prove to be effective ketone hydrosilylation catalysts. Treatment of 1/3-P(i)Pr(2)-2-S(t)Bu-indene with 0.5 equiv of [Cp*RhCl(2)](2) gave Cp*Rh(Cl)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (8) in 94% yield. Combination of 8 and LiB(C(6)F(5))(4) x 2.5 Et(2)O produced the coordinatively unsaturated cation [Cp*Rh(kappa(2)-3-P(i)Pr(2)-2-S-indene)](+)B(C(6)F(5))(4)(-) ([9](+)B(C(6)F(5))(4)(-)), which was transformed into [Cp*Rh(H)(kappa(2)-3-P(i)Pr(2)-2-S(SiHPh(2))-indene)](+)B(C(6)F(5))(4)(-) (10) via net H-Si addition of Ph(2)SiH(2) to Rh-S. Unlike [2](+)X(-), complex [9](+)B(C(6)F(5))(4)(-) was shown to be an effective catalyst for ketone hydrosilylation. Treatment of 3 x CH(3)CN with Ph(2)SiH(2) resulted in the loss of CH(3)CN, along with the formation of Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-S-(1-diphenylsilylindene)) (11) (64% isolated yield) as a mixture of diastereomers. The formation of 11 corresponds to heterolytic H-Si bond activation, involving net addition of H(-) and Ph(2)HSi(+) fragments to Ir and indenide in the unobserved zwitterion 3. Crystallographic data are provided for 1, [2 x CO](+)OTf(-), 3 x CH(3)CN, 7, and 11. Collectively, these results demonstrate the versatility of donor-functionalized indene ancillary ligands in allowing for the selection of divergent metal-ligand cooperativity pathways (simply by ancillary ligand deprotonation) in the activation of small molecule substrates.  相似文献   

7.
The syntheses, structural and spectroscopic characterization, fluoride abstraction reactions, and photochemical reactivity of cationic uranyl(VI) phosphine oxide complexes are described. [UO2(OPPh3)4][X]2 (1a, X = OTf; 1b, X = BF4) and [UO2(dppmo)2(OPPh3)][X]2 (2a, X = OTf; 2b, X = BF(4)) are prepared from the corresponding uranyl(VI) chloride precursor and 2 equiv each of AgX and phosphine oxide. The BF4- compounds 1b and 2b are prone to fluoride abstraction reactions in methanol, leading to dinuclear fluoride-bridged uranyl(VI) complexes. Fluoride abstraction of 2b in methanol generates two structural isomers of the fluoride-bridged uranyl(VI) dimer [(UO2(dppmo)2)2(mu-F)][BF4]3 (4), both of which have been structurally characterized. In the major isomer 4C, the four dppmo ligands are all chelating, while in the minor isomer 4B, two of the dppmo ligands bridge adjacent uranyl(VI) centers. Photolysis of 2b in methanol proceeds through 4 to form the uranium(IV) fluoride complex [UO2F2(dppmo)3][BF4]2 (5), involving another fluoride abstraction step. X-ray crystallography shows 5 to be a rare example of a structurally characterized uranium(IV) complex possessing terminal U-F bonds. Complex 5 reverts to 4 in solution upon exposure to air.  相似文献   

8.
Dissolution of [UO2(OTf)2](1) in anhydrous thf, dme or py led to the formation of the complexes [UO2(OTf)2(thf)3](2), [UO2(OTf)2(dme)](3) and [UO2(OTf)2(py)3](4), respectively. Compounds 2 and 4 are neutral monomers in the solid state as well as the chloride [UO2Cl2(py)3](5) which was prepared in a similar way as for from the dimer [[UO2Cl2(thf)2]2]. Addition of 4 equivalents of triphenylphosphine oxide (tppo) to 1 afforded, in pyridine, the dicationic species [UO2(tppo)4][OTf]2 (6). The bi- or terdentate nitrogen molecules 2,2'-bipy, phen or terpy reacted with 1 in acetonitrile or pyridine to give [UO2(OTf)2(bipy)2](7), [UO2(phen)3][OTf]2(8), [UO2(OTf)2(terpy)](9) and [UO2(terpy)2][OTf]2(10), respectively. The hydroxide compound [[UO2(OH)(terpy)]2][OTf]2(11) was obtained by hydrolysis in air of 1 in a mixture of acetonitrile and ethanol in the presence of terpyridine. The X-ray crystal structures of , and reveal a novel coordination geometry for the uranyl ion, the uranium atom being in a rhombohedral environment; the six coordinating ligands atoms of the [UO2]2+ ion are separated into two parallel and staggered equilateral triangles and the UO2 axis is perpendicular to these triangles, passing through their centre. The structures of the mono(terpy) complexes 9 and 11 show the uranium atoms in a distorted pentagonal bipyramidal configuration with the nitrogen atom of the central pyridine ring of the terpy ligand significantly displaced from the equatorial plane.  相似文献   

9.
Alpha-hydrogen abstraction and alpha-hydrogen migration reactions yield novel titanium(IV) complexes bearing terminal phosphinidene ligands. Via an alpha-H migration reaction, the phosphinidene ((tBu)nacnac)Ti=P[Trip](CH(2)(tBu) ((tBu)nacnac(-) = [Ar]NC((t)Bu)CHC((t)Bu)N[Ar], Ar = 2,6-(CHMe2)(2C6H3, Trip = 2,4,6-(i)Pr3C6H2) was prepared by the addition of the primary phosphide LiPH[Trip] to the nucleophilic alkylidene triflato complex ((tBu)nacnac)Ti=CH(t)Bu(OTf), while alpha-H abstraction was promoted by the addition of LiPH[Trip] to the dimethyl triflato precursor ((tBu)nacnac)Ti(CH)(2)(OTf) to afford ((tBu)nacnac)Ti=P[Trip](CH3). Treatment of ((tBu)nacnac)Ti=P[Trip](CH3) with B(C6F5)(3) induces methide abstraction concurrent with formation of the first titanium(IV) phosphinidene zwitterion complex ((tBu)nacnac)Ti=P[Trip]{CH3B(C6F5)(3)}. Complex ((tBu)nacnac)Ti=P[Trip]{CH3B(C6F5)(3)} [2 + 2] cycloadds readily PhCCPh to afford the phosphametallacyclobutene [((tBu)nacnac)Ti(P[Trip]PhCCPh)][CH3B(C6F5)(3)]. These titanium(IV) phosphinidene complexes possess the shortest Ti=P bonds reported, have linear phosphinidene groups, and reveal significantly upfielded solution 31P NMR spectroscopic resonances for the phosphinidene phosphorus. Solid state 31P NMR spectroscopic data also corroborate with all three complexes possessing considerably shielded chemical shifts for the linear and terminal phosphinidene functionality. In addition, high-level DFT studies on the phosphinidenes suggest the terminal phosphinidene linkage to be stabilized via a pseudo Ti[triple bond]P bond. Linearity about the Ti-P-C(ipso) linkage is highly dependent on the sterically encumbering substituents protecting the phosphinidene. Complex ((tBu)nacnac)Ti=P[Trip]{CH3B(C6F5))(3)} can catalyze the hydrophosphination of PhCCPh with H(2)PPh to produce the secondary vinylphosphine HP[Ph]PhC=CHPh. In addition, we demonstrate that this zwitterion is a powerful phospha-Staudinger reagent and can therefore act as a carboamination precatalyst of diphenylacetylene with aldimines.  相似文献   

10.
We report the synthesis and structural characterization of [UO(2)(ReO(4))(DPPMO(2))(2)][ReO(4)] and [UO(2)(Cl)(DPPMO(2))(2)][Cl] (where DPPMO(2) = bis(diphenylphosphino)methane dioxide). In both complexes, the linear uranyl dication is coordinated to two bidentate DPPMO(2) ligands in the equatorial plane with one coordinated and one non-coordinated anion (either perrhenate or chloride). We have also prepared the pertechnetate analogue, and, through (31)P and (99)Tc NMR, we have shown that the cation, [UO(2)(TcO(4))(DPPMO(2))(2)](+), is stable in solution.  相似文献   

11.
Rhodium(III) and iridium(III) complexes containing bis(pyrazolyl)methane ligands (pz = pyrazole, L' in general; specifically, L1 = H2C(pz)2, L2 = H2C(pzMe2)2, L3 = H2C(pz4Me)2, L4 = Me2C(pz)2), have been prepared in a study exploring the reactivity of these ligands toward [Cp*MCl(mu-Cl)]2 dimers (M = Rh, Ir; Cp* = pentamethylcyclopentadienyl). When the reaction was carried out in acetone solution, complexes of the type [Cp*M(L')Cl]Cl were obtained. However, when L1 and L2 ligands have been employed with excess [Cp*MCl(mu-Cl)]2, the formation of [Cp*M(L')Cl][Cp*MCl3] species has been observed. PGSE NMR measurements have been carried out for these complexes, in which the counterion is a cyclopentadienyl metal complex, in CD2Cl2 as a function of the concentration. The hydrodynamic radius (rH) and, consequently, the hydrodynamic volume (VH) of all the species have been determined from the measured translational self-diffusion coefficients (Dt), indicating the predominance of ion pairs in solution. NOE measurements and X-ray single-crystal studies suggest that the [Cp*MCl3]- approaches the cation, orienting the three Cl-legs of the "piano-stool" toward the CH2 moieties of the bis(pyrazolyl)methane ligands. The reaction of 1 equiv of [Cp*M(L')Cl]Cl or [Cp*M(L')Cl][Cp*MCl3] with 1 equiv of AgX (X = ClO4 or CF3SO3) in CH2Cl2 allows the generation of [Cp*M(L')Cl]X, whereas the reaction of 1 equiv of [Cp*M(L')Cl] with 2 equiv of AgX yields the dicationic complexes [Cp*M(L')(H2O)][X]2, where single water molecules are directly bonded to the metal atoms. The solid-state structures of a number of complexes were confirmed by X-ray crystallographic studies. The reaction of [Cp*Ir(L')(H2O)][X]2 with ammonium formate in water or acetone solution allows the generation of the hydride species [Cp*Ir(L')H][X].  相似文献   

12.
Addition of 1.5 equiv of I2 to a THF solution of UI3(THF)4, containing either 6 equiv of tBuNH2 or 2 equiv of RNH2 (R = Ph, 3,5-(CF3)2C6H3, 2,6-(iPr)2C6H3) and 4 equiv of NEt3, generates orange solutions containing U(NtBu)2I2(THF)2 (1) or U(NAr)2I2(THF)3 (Ar = Ph, 2; 3,5-(CF3)2C6H3, 3; 2,6-(iPr)2C6H3, 4), respectively, all of which can be isolated in good yields. Alternatively, 1 can be prepared by reaction of uranium metal with 3 equiv of I2 and 6 equiv of tBuNH2, also in good yield. Complexes 1-4 have been characterized by X-ray crystallography, and each of these complexes exhibits linear N-U-N linkages and short U-N bonds. Using density functional theory simulations of complexes 1 and 2, two triple bonds between the metal center and the nitrogen ligands were identified. Complexes 1 and 2 readily react with neutral Lewis bases such as pyridine or Ph3PO to form U(NR)2I2(L)2 (R = tBu, L = py, 5; Ph3PO, 7; R = Ph, L = py, 6; Ph3PO, 8), and with PMe3 to form U(NR)2I2(THF)(PMe3)2 (R = tBu, 9; Ph, 10). The solid-state molecular structures of 5, 7, and 9 have been determined by X-ray crystallography, and these complexes, like their parent compounds, exhibit linear N-U-N angles and short U-N bonds. Complexes 1 and 2 also react with AgOTf in CH2Cl2, forming U(NR)2(OTf)2(THF)3 (R = tBu, 11; Ph, 12) after recrystallization from THF. Crystals of 12 grown from CH2Cl2 were found to contain a dimer, [U(NPh)2(OTf)2(THF)2]2, a complex possessing bridging triflate groups.  相似文献   

13.
Addition of 2 equiv of HSiEt(3) to UO(2)((Ar)acnac)(2) ((Ar)acnac = ArNC(Ph)CHC(Ph)O, Ar = 3,5-(t)Bu(2)C(6)H(3)) in the presence of 1 equiv of B(C(6)F(5))(3) results in formation of the U(V) bis(silyloxide) complex [U(OSiEt(3))(2)((Ar)acnac)(2)][HB(C(6)F(5))(3)] (1) in 80% yield. Also produced in the reaction, as a minor product, is U(OSiEt(3))(OB{C(6)F(5)}(3))((Ar)acnac)(2) (2). Interestingly, thermolysis of 1 at 85 °C for 24 h also results in formation of 2, concomitant with production of Et(3)SiH. Addition of 1 equiv of Cp(2)Co to 1 results in formation of U(OSiEt(3))(2)((Ar)acnac)(2) (3) and [Cp(2)Co][HB(C(6)F(5))(3)] (4), which can be isolated in 61% and 71% yields, respectively. Complexes 1-3 have been characterized by X-ray crystallography, while the solution-phase redox properties of 1 have been measured with cyclic voltammetry.  相似文献   

14.
Using molecular dynamics simulations, we compare the solvation of uranyl and strontium nitrates and uranyl chlorides in two room-temperature ionic liquids (ILs): [BMI][PF(6)] based on 1-butyl-3-methylimidazolium(+),PF(6)(-) and [EMI][TCA] based on 1-ethyl-3-methylimidazolium(+),AlCl(4)(-). Both dissociated M(2+),2NO(3)(-) and associated M(NO(3))(2) states of the salts are considered for the two cations, as well as the UO(2)Cl(2) and UO(2)Cl(4)(2)(-) uranyl complexes. In a [BMI][PF(6)] solution, the "naked" UO(2)(2+) and Sr(2+) ions are surrounded by 5.8 and 10.1 F atoms, respectively. The first-shell PF(6)(-) anions rotate markedly during the dynamics and are coordinated, on the average, monodentate to UO(2)(2+) and bidentate to Sr(2+). In an [EMI][TCA] solution, UO(2)(2+) and Sr(2+) coordinate 5.0 and 7.4 Cl atoms of AlCl(4)(-), respectively, which display more restricted motions. Four Cl atoms sit on a least motion pathway of transfer to uranyl, to form the UO(2)Cl(4)(2)(-) complex. The free NO(3)(-) anions and the UO(2)Cl(4)(2)(-) complex are surrounded by imidazolium(+) cations ( approximately 4 and 6-9, respectively). The first shell of the M(NO(3))(2) and UO(2)Cl(2) neutral complexes is mostly completed by the anionic components of the IL, with different contributions depending on the solvent, the M(2+) cation, and its counterions. Insights into energy components of solvation are given for the different systems.  相似文献   

15.
Reaction of [Cp*Ir(micro-H)](2) (5) (Cp* = eta(5)-C(5)Me(5)) with bis(dimethylphosphino)methane (dmpm) gives a new neutral diiridium complex [(Cp*Ir)(2)(micro-dmpm)(micro-H)(2)] (3). Treatment of 3 with methyl triflate at -30 degrees C results in the formation of [(Cp*Ir)(H)(micro-dmpm)(micro-H)(Me)(IrCp*)][OTf] (6). Warming a solution of above 0 degrees C brings about predominant generation of 32e(-) Ir(II)-Ir(II) species [(Cp*Ir)(micro-dmpm)(micro-H)(IrCp*)][OTf] (7). Further heating of the solution of 7 up to 30 degrees C for 14 h leads to quantitative formation of a new complex [(Cp*Ir)(H)(micro-Me(2)PCH(2)PMeCH(2))(micro-H)(IrCp*)][OTf] (8), which is formed by intramolecular oxidative addition of the methyl C-H bond of the dmpm ligand. Intermolecular C-H bond activation reactions with 7 are also examined. Reactions of 7 with aromatic molecules (benzene, toluene, furan, and pyridine) at room temperature result in the smooth sp(2) C-H activation to give [(Cp*Ir)(H)(micro-dmpm)(micro-H)(Ar)(IrCp*)][OTf] (Ar = Ph (9); Ar = m-Tol (10a) or p-Tol (10b); Ar = 2-Fur (11)) and [(Cp*Ir)(H)(micro-dmpm)(micro-C(5)H(4)N)(H)(IrCp*)][OTf] (12), respectively. Complex also reacts with cyclopentene at 0 degrees C to give [(Cp*Ir)(H)(micro-dmpm)(micro-H)(1-cyclopentenyl)(IrCp*)][OTf] (13). Structures of 3, 8 and 12 have been confirmed by X-ray analysis.  相似文献   

16.
The copper coordination chemistry of two phthalazine-based ligands of differing steric bulk was investigated. A family of dinuclear complexes were prepared from reactions of [Cu(2)(bdptz)(MeCN)(2)](OTf)(2), 1(OTf)(2), where bdptz = 1,4-bis(2,2'-dipyridylmethyl)phthalazine. Treatment of 1(OTf)(2) with NaO(2)CCH(3) afforded the class I mixed-valent compound [Cu(2)(bdptz)(2)](OTf)(3), 2(OTf)(3), by disproportionation of Cu(I). Compound 2(OTf)(3) displays an electron paramagnetic resonance spectrum, with g( parallel ) = 2.25 (A( parallel ) = 169 G) and g( perpendicular ) = 2.06, and exhibits a reversible redox wave at -452 mV versus Cp(2)Fe(+)/Cp(2)Fe. The complex [Cu(2)(bdptz)(micro-OH)(MeCN)(2)](OTf)(3), 3(OTf)(3), was prepared by chemical oxidation of 1 with AgOTf, and exposure of 1 to dioxygen afforded [Cu(2)(bdptz)(micro-OH)(2)](2)(OTs)(4), 4(OTs)(4), which can also be obtained directly from [Cu(H(2)O)(6)](OTs)(2). In compound [Cu(2)(bdptz)(micro-vpy)](OTf)(2), 5(OTf)(2), where vpy = 2-vinylpyridine, the vpy ligand bridges the two Cu(I) centers by using both its pyridine nitrogen and the olefin as donor functionalities. The sterically hindered compounds [Cu(2)(Ph(4)bdptz)(MeCN)(2)](OTf)(2), 6(OTf)(2), and [Cu(2)(Ph(4)bdptz)(micro-O(2)CCH(3))](OTf), 7(OTf), were also synthesized, where Ph(4)bdptz = 1,4-bis[bis(6-phenyl-2-pyridyl)methyl]phthalazine. Complexes 1-7 were characterized structurally by X-ray crystallography. In 6 and 7, the four phenyl rings form a hydrophobic pocket that houses the acetonitrile and acetate ligands. Complex 6 displays two reversible redox waves with E(1/2) values of +41 and +516 mV versus Cp(2)Fe(+)/Cp(2)Fe. Analysis of oxygenated solutions of 6 by electrospray ionization mass spectrometry reveals probable aromatic hydroxylation of the Ph(4)bdptz ligand. The different chemical and electrochemical behavior of 1 versus 6 highlights the influence of a hydrophobic binding pocket on the stability and reactivity of the dicopper(I) centers.  相似文献   

17.
We describe the synthesis, solid state and solution properties of two families of uranyl(VI) complexes that are ligated by neutral monodentate and anionic bidentate P=O, P=NH and As=O ligands bearing pendent phenyl chromophores. The uranyl(VI) ions in these complexes possess long-lived photoluminescent LMCT (3)Π(u) excited states, which can be exploited as a sensitive probe of electronic structure, bonding and aggregation behaviour in non-aqueous media. For a family of well defined complexes of given symmetry in trans-[UO(2)Cl(2)(L(2))] (L = Ph(3)PO (1), Ph(3)AsO (2) and Ph(3)PNH (3)), the emission spectral profiles in CH(2)Cl(2) are indicative of the strength of the donor atoms bound in the equatorial plane and the uranyl bond strength; the uranyl LMCT emission maxima are shifted to lower energy as the donor strength of L increases. The luminescence lifetimes in fluid solution mirror these observations (0.87-3.46 μs) and are particularly sensitive to vibrational and bimolecular deactivation. In a family of structurally well defined complexes of the related anion, tetraphenylimidodiphosphinate (TPIP), monometallic complexes, [UO(2)(TPIP)(thf)] (4), [UO(2)(TPIP)(Cy(3)PO)] 5), a bimetallic complex [UO(2)(TPIP)(2)](2) (6) and a previously known trimetallic complex, [UO(2)(TPIP)(2)](3) (7) can be isolated by variation of the synthetic procedure. Complex 7 differs from 6 as the central uranyl ion in 7 is orthogonally connected to the two peripheral ones via uranyl → uranium dative bonds. Each of these oligomers exhibits a characteristic optical fingerprint, where the emission maxima, the spectral shape and temporal decay profiles are unique for each structural form. Notably, excited state intermetallic quenching in the trimetallic complex 7 considerably reduces the luminescence lifetime with respect to the monometallic counterpart 5 (from 2.00 μs to 1.04 μs). This study demonstrates that time resolved and multi-parametric luminescence can be of value in ascertaining solution and structural forms of discrete uranyl(VI) complexes in non-aqueous solution.  相似文献   

18.
Treatment of [UO(2)Cl(2)(thf)(3)] in thf with 2 equiv of Na[PhC(NSiMe(3))(2)] (Na[NCN]) or Na[Ph(2)P(NSiMe(3))(2)] (Na[NPN]) gives uranyl complex [UO(2)(NCN)(2)(thf)] (1) or [UO(2)(NPN)(2)] (3), respectively. Each complex is a rare example of out-of-plane equatorial nitrogen ligand coordination; the latter contains a significantly bent O=U=O unit and represents the first example of a uranyl ion within a quadrilateral-faced monocapped trigonal prismatic geometry. Removal of the thf in 1 gives [UO(2)(NCN)(2)] (2) with in-plane N donor ligands. Addition of 3 equiv of Na[NCN] gives the tris complex [Na(thf)(2)PhCN][[UO(2)(NCN)(3)] (4.PhCN) with elongation and weakening of one U=O bond through coordination to Na(+). Hydrolysis of 4 provides the oxo-bridged dimer [Na(thf)UO(2)(NCN)(2)](2)(micro(2)-O) (6), a complex with the lowest reported O=U=O symmetrical stretching frequency (nu(1) = 757 cm(-)(1)) for a dinuclear uranyl complex. The anion in complex 4 is unstable in solution but can be stabilized by the introduction of 18-crown-6 to give [Na(18-crown-6)][UO(2)(NCN)(3)] (5). The structures of 1-4 and 6 have been determined by crystallography, and all except 2 show significant deviations of the N ligand atoms from the equatorial plane, driven by the steric bulk of the NCN and NPN ligands. Despite the unusual geometries, these distortions in structure do not appear to have any direct effect on the bonding and electronic structure of the uranyl ion. The main influences toward lowering the U=O bond stretching frequency (nu(1)) are the donating ability of the equatorial ligands, overall charge of the complex, and U=O.Na-type interactions. The intense orange/red colors of these compounds are because of low-energy ligand-to-metal charge-transfer electronic transitions.  相似文献   

19.
Addition of 1.0 equiv of Ph3SiH to [Cp*(PMe3)Rh(Me)(CH2Cl2)]+BAr'4- (1) resulted in release of methane and quantitative formation of [Cp*(PMe3)Rh(SiPh3)(CH2Cl2)]+BAr'4- (2). Subsequent addition of 1.0 equiv of MeCN to 2 caused immediate displacement of dichloromethane to form the eta1-nitrile adduct [Cp*(PMe3)Rh(SiPh3)(NCMe)]+BAr'4- (3). Upon standing at room-temperature overnight, complex 3 converted quantitatively to another product which has been characterized as the C-C activation product, [Cp*(PMe3)Rh(Me)(CNSiPh3)]+BAr'4- (5). Addition of other nitrile substrates (R-CN, R = Ph, (4-CF3)Ph, (4-MeO)Ph, iPr, tBu) to 2 also resulted in C-C activation of the R-CN bond to form [Cp*(PMe3)Rh(R)(CNSiPh3)]+BAr'4-. Evidence for an eta2-iminoacyl intermediate complex, [Cp*(PMe3)Rh(eta2-C(R)=N(SiPh3)]+BAr'4-, is also presented.  相似文献   

20.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号