首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report extensive Monte Carlo and event-driven molecular dynamics simulations of the fluid and liquid phase of a primitive model for silica recently introduced by Ford et al. [J. Chem. Phys. 121, 8415 (2004)]. We evaluate the isodiffusivity lines in the temperature-density plane to provide an indication of the shape of the glass transition line. Except for large densities, arrest is driven by the onset of the tetrahedral bonding pattern and the resulting dynamics is strong in Angell's classification scheme [J. Non-Cryst. Solids 131-133, 13 (1991)]. We compare structural and dynamic properties with corresponding results of two recently studied primitive models of network forming liquids-a primitive model for water and an angular-constraint-free model of four-coordinated particles-to pin down the role of the geometric constraints associated with bonding. Eventually we discuss the similarities between "glass" formation in network forming liquids and "gel" formation in colloidal dispersions of patchy particles.  相似文献   

2.
We have calculated the critical cluster sizes and homogeneous nucleation rates of water at temperatures and vapor densities corresponding to experiments by Wolk and Strey [J. Phys. Chem B 105, 11683 (2001)]. The calculations have been done with an expanded version of a Monte Carlo method originally developed by Vehkamaki and Ford [J. Chem. Phys. 112, 4193 (2000)]. Their method calculates the statistical growth and decay probabilities of molecular clusters. We have derived a connection between these probabilities and kinetic condensation and evaporation rates, and introduce a new way for the calculation of the work of formation of clusters. Three different interaction potential models of water have been used in the simulations. These include the unpolarizable SPC/E [J. Phys. Chem. 91, 6269 (1987)] and TIP4P [J. Chem. Phys. 79, 926 (1983)] models and a polarizable model by Guillot and Guissani [J. Chem. Phys. 114, 6720 (2001)]. We show that TIP4P produces critical cluster sizes and a temperature and vapor density dependence for the nucleation rate that agree well with the experimental data, although the magnitude of nucleation rate is constantly overestimated by a factor of 2 x 10(4). Guissani and Guillot's model is somewhat less successful, but both the TIP4P and Guillot and Guissani models are able to reproduce a much better experimental temperature dependency of the nucleation rate than the classical nucleation theory. Using SPC/E results in dramatically too small critical clusters and high nucleation rates. The water models give different average binding energies for clusters. We show that stronger binding between cluster molecules suppresses the decay probability of a cluster, while the growth probability is not affected. This explains the differences in results from different water models.  相似文献   

3.
The most common potentials used in classical simulations of liquid water assume a pairwise additive form. Although these models have been very successful in reproducing many properties of liquid water at ambient conditions, none is able to describe accurately water throughout its complicated phase diagram. The primary reason for this is the neglect of many-body interactions. To this end, a simulation model with explicit three-body interactions was introduced recently [R. Kumar and J. L. Skinner, J. Phys. Chem. B 112, 8311 (2008)]. This model was parameterized to fit the experimental O-O radial distribution function and diffusion constant. Herein we reparameterize the model, fitting to a wider range of experimental properties (diffusion constant, rotational correlation time, density for the liquid, liquid/vapor surface tension, melting point, and the ice Ih density). The robustness of the model is then verified by comparing simulation to experiment for a number of other quantities (enthalpy of vaporization, dielectric constant, Debye relaxation time, temperature of maximum density, and the temperature-dependent second and third virial coefficients), with good agreement.  相似文献   

4.
The two one-dimensional models introduced in Part I are used to study the thermodynamics of solvation of inert solutes in water. It is shown that the anomalously large Gibbs energy of solvation of inert solutes in water, on one hand, and the large negative entropy of solvation, on the other hand, arise from different molecular sources. While the primitive model can give rise to a large positive solvation Gibbs energy, it fails to show large negative entropy and enthalpy of solvation. It is remarkable that the primitive cluster model can show both the large positive Gibbs energy and enthalpy of solvation.  相似文献   

5.
Water is known to exhibit a number of peculiar physical properties because of the strong orientational dependence of the intermolecular hydrogen bonding interactions that dominate its liquid state. Recent full-atom simulations of water in a nanolayer between graphite plates submersed in an aqueous medium have raised the possibility of a new addition to this list of peculiarities: they show that application of a strong, uniform electric field normal to and between the plates can cause a pronounced decrease in particle density, rather than the increase expected from electrostriction theory for polarizable fluids [Vaitheeswaran et al., J. Phys. Chem. B 70, 6629 (2005)]. However, in seeming contradiction to this result, another study that simulated a range of similar systems has reported a less surprising electrostrictive increase in particle density upon application of the field [Bratko et al., J. Am. Chem. Soc. 129, 2504 (2007)]. In this work, we attempt to reconcile these conflicting simulation phenomena using a statistical mechanical lattice liquid model of water in an applied field. By solving the model using mean-field theory, we show that a field-induced transition to a markedly lower-density phase such as that observed in recent simulations is possible within a certain parameter regime, but that outside of this regime, the more conventional electrostrictive result should be obtained. Upon modifying the model to treat the case of bulk water under constant pressure in an applied field, we predict a density drop with rising field, and subsequently observe the predicted behavior in our own molecular dynamics simulations of liquid water. Our findings lead us to propose that the model considered here may be useful in a variety of contexts for describing the trade-off between orientational ordering of water molecules and their participation in the liquid phase.  相似文献   

6.
This paper explores the influence of choice of potential model on the quantum effects observed in liquid water and ice. This study utilizes standard rigid models and a more formal context for the rigid-body centroid molecular dynamics methodology used to perform the quantum simulations is provided. Quantum and classical molecular dynamics simulations are carried out for liquid water and ice Ih at 298 and 220 K, respectively, with the simple point charge/extended and TIP4P-Ew water models. The results obtained for equilibrium and dynamical properties are compared with those recently reported on TIP4P [L. Hernandez de la Pena and P. G. Kusalik, J. Chem. Phys. 121, 5992 (2004); L. Hernandez de la Pena et al., J. Chem. Phys 123, 144506 (2005)]. For the liquid, an energy shift of about 8% and an average molecular uncertainty of about 11 degrees were found independently of the water model. The self-diffusion coefficient consistently increases by more than 50% when going from the classical to the quantum system and quantum dynamics are found to reproduce the experimental isotopic shifts with the models examined. The ice results compare remarkably well with those previously reported for the TIP4P water model; they confirm that quantum effects are considerable and that the quantum mechanical uncertainty and the energy shifts due to quantization are smaller in ice than in liquid water. The relevance of these findings in the context of the construction of water models is briefly discussed.  相似文献   

7.
To estimate accurately the density of water over a wide range of temperatures with a density maximum at 4?°C is one of the most stringent tests of molecular models. The shape of the curve influences the ability to describe critical properties and to predict the freezing temperature. While it was demonstrated that with a proper parameter fit nonpolarizable models can approximate this behavior accurately, it is much more difficult to do this for polarizable models. We provide a short overview of ρ-T diagrams for existing models, then we give an explanation of this difficulty. We present a version of the BK model [A. Baranyai and P. T. Kiss, J. Chem. Phys. 133, 144109 (2010); and ibid. 135, 234110 (2011)] which is capable to predict the density of water over a wide range of temperature. The BK model uses the charge-on-spring method with three Gaussian charges. Since the experimental dipole moment and the geometry is fixed, and the quadrupole moment is approximated by a least mean square procedure, parameters of the repulsion and dispersive attraction forces remained as free tools to match experimental properties. Relying on a simplified but plausible justification, the new version of the model uses repulsion and attraction as functions of the induced dipole moment of the molecule. The repulsive force increases, while the attractive force decreases with the size of the molecular dipole moment. At the same time dipole moment dependent dispersion forces are taking part in the polarization of the molecule. This scheme iterates well and, in addition to a reasonable density-temperature function, creates dipole distributions with accurate estimation of the dielectric constant of the liquid.  相似文献   

8.
We apply the combined electronic structure/molecular dynamics approach of Corcelli, Lawrence, and Skinner [J. Chem. Phys. 120, 8107 (2004)] to the fluctuating charge (SPC-FQ) model of liquid water developed by Rick, Stuart, and Berne [J. Chem. Phys. 101, 6141 (1994)]. For HOD in H(2)O the time scale for the long-time decay of the OD stretch frequency time-correlation function, which corresponds to the time scale for hydrogen-bond rearrangement in the liquid, is about 1.5 ps. This result is significantly longer than the 0.9 ps decay previously calculated for the nonpolarizable SPC/E water model. Our results for the SPC-FQ model are in better agreement with recent vibrational echo experiments.  相似文献   

9.
A new, efficient potential energy function for liquid water is presented here. The new model, which is referred here as the soft sticky dipole-quadrupole-octupole (SSDQO) model, describes a water molecule as a Lennard-Jones sphere with point dipole, quadrupole, and octupole moments. It is a single-point model and resembles the hard-sphere sticky dipole potential model for water by Bratko et al. [J. Chem. Phys. 83, 6367 (1985)] and the soft sticky dipole model by Ichiye and Liu [J. Phys. Chem. 100, 2723 (1996)] except now the sticky potential consists of an approximate moment expansion for the dimer interaction potential, which is much faster than the true moment expansion. The object here is to demonstrate that the SSDQO potential energy function can accurately mimic the potential energy function of a multipoint model using the moments of that model. First, the SSDQO potential energy function using the dipole, quadruple, and octupole moments from SPC/E, TIP3P, or TIP5P is shown to reproduce the dimer potential energy functions of the respective multipoint model. In addition, in Monte Carlo simulations of the pure liquid at room temperature, SSDQO reproduces radial distribution functions of the respective model. However, the Monte Carlo simulations using the SSDQO model are about three times faster than those using the three-point models and the long-range interactions decay faster for SSDQO (1/r(3) and faster) than for multipoint models (1/r). Moreover, the contribution of each moment to the energetics and other properties can be determined. Overall, the simplicity, efficiency, and accuracy of the SSDQO potential energy function make it potentially very useful for studies of aqueous solvation by computer simulations.  相似文献   

10.
The dynamical properties of liquid water play an important role in many processes in nature. In this paper, we focus on the infrared (IR) absorption spectrum of liquid water based on the linearized semiclassical initial value representation (LSC-IVR) with the local Gaussian approximation (LGA) [J. Liu and W. H. Miller, J. Chem. Phys. 131, 074113 (2009)] and an ab initio based, flexible, polarizable Thole-type model (TTM3-F) [G. S. Fanourgakis and S. S. Xantheas, J. Chem. Phys. 128, 074506 (2008)]. Although the LSC-IVR (LGA) gives the exact result for the isolated three-dimensional shifted harmonic stretching model, it yields a blueshifted peak position for the more realistic anharmonic stretching potential. By using the short-time information of the LSC-IVR correlation function; however, it is shown how one can obtain more accurate results for the position of the stretching peak. Due to the physical decay in the condensed phase system, the LSC-IVR (LGA) is a good and practical approximate quantum approach for the IR spectrum of liquid water. The present results offer valuable insight into future attempts to improve the accuracy of the TTM3-F potential or other ab initio-based models in reproducing the IR spectrum of liquid water.  相似文献   

11.
12.
A molecular theory of liquid water is identified and studied on the basis of computer simulation of the TIP3P model of liquid water. This theory would be exact for models of liquid water in which the intermolecular interactions vanish outside a finite spatial range, and therefore provides a precise analysis tool for investigating the effects of longer-ranged intermolecular interactions. We show how local order can be introduced through quasichemical theory. Long-ranged interactions are characterized generally by a conditional distribution of binding energies, and this formulation is interpreted as a regularization of the primitive statistical thermodynamic problem. These binding-energy distributions for liquid water are observed to be unimodal. The Gaussian approximation proposed is remarkably successful in predicting the Gibbs free energy and the molar entropy of liquid water, as judged by comparison with numerically exact results. The remaining discrepancies are subtle quantitative problems that do have significant consequences for the thermodynamic properties that distinguish water from many other liquids. The basic subtlety of liquid water is found then in the competition of several effects which must be quantitatively balanced for realistic results.  相似文献   

13.
14.
15.
In order to introduce flexibility into the simple point-charge (SPC) water model, the impact of the intramolecular degrees of freedom on liquid properties was systematically studied in this work as a function of many possible parameter sets. It was found that the diffusion constant is extremely sensitive to the equilibrium bond length and that this effect is mainly due to the strength of intermolecular hydrogen bonds. The static dielectric constant was found to be very sensitive to the equilibrium bond angle via the distribution of intermolecular angles in the liquid: A larger bond angle will increase the angle formed by two molecular dipoles, which is particularly significant for the first solvation shell. This result is in agreement with the work of Hochtl et al. [J. Chem. Phys. 109, 4927 (1998)]. A new flexible simple point-charge water model was derived by optimizing bulk diffusion and dielectric constants to the experimental values via the equilibrium bond length and angle. Due to the large sensitivities, the parametrization only slightly perturbs the molecular geometry of the base SPC model. Extensive comparisons of thermodynamic, structural, and kinetic properties indicate that the new model is much improved over the standard SPC model and its overall performance is comparable to or even better than the extended SPC model.  相似文献   

16.
Statistical associating fluid theory coupled with the restricted primitive model is extended to multivalent ions by relaxing the range of the square-well width parameter, which leads to a new dispersion term approximation and calls for a new set of salt and ion parameters. This new approximation, referred to as SAFT2, requires a single set of parameters derived from the salt (mean ionic) activity coefficients and liquid densities of single-salt solutions for five cations (Li(+), Na(+), K(+), Ca(2+), Mg(2+)), six anions (Cl(-), Br(-), I(-), NO(3)(-), SO(4)(-2), HCO(3)(-)), and 24 salts. These parameters, in turn, are shown to predict the osmotic coefficients for single salt + water solutions.  相似文献   

17.
In experiments, the growth rate of ice from supercooled water is seen to increase with the degree of supercooling, that is, the lower the temperature, the faster the crystallization takes place. In molecular dynamics simulations of the freezing process, however, the temperature is usually kept constant by means of a thermostat that artificially removes the heat released during the crystallization by scaling the velocities of the particles. This direct removal of energy from the system replaces a more realistic heat-conduction mechanism and is believed to be responsible for the curious observation that the thermostatted ice growth proceeds fastest near the melting point and more slowly at lower temperatures, which is exactly opposite to the experimental findings [M. A. Carignano, P. B. Shepson, and I. Szleifer, Mol. Phys. 103, 2957 (2005)]. This trend is explained by the diffusion and the reorientation of molecules in the liquid becoming the rate-determining steps for the crystal growth, both of which are slower at low temperatures. Yet, for a different set of simulations, a kinetic behavior analogous to the experimental finding has been reported [H. Nada and Y. Furukawa, J. Crystal Growth 283, 242 (2005)]. To clarify this apparent contradiction, we perform relatively long simulations of the TIP4P/Ice model in an extended range of temperatures. The temperature dependence of the thermostatted ice growth is seen to be more complex than was previously reported: The crystallization process is very slow close to the melting point at 270 K, where the thermodynamic driving force for the phase transition is weak. On lowering the temperature, the growth rate initially increases, but displays a maximum near 260 K. At even lower temperatures, the freezing process slows down again due to the reduced diffusivity in the liquid. The velocity of the thermostatted melting process, in contrast, shows a monotonic increase upon raising the temperature beyond the normal melting point. In this case, the effects of the increasing thermodynamic driving force and the faster diffusion at higher temperatures reinforce each other. In the context of this study, we also report data for the diffusion coefficient as a function of temperature for the water models TIP4P/Ice and TIP4P/2005.  相似文献   

18.
The dynamical properties of the soft sticky dipole-quadrupole-octupole (SSDQO) water model using SPC/E moments are calculated utilizing molecular dynamics simulations. This new potential for liquid water describes the water-water interactions by a Lennard-Jones term and a sticky potential, which is an approximate moment expansion with point dipole, quadrupole, and octupole moments, and reproduces radial distribution functions of pure liquid water using the moments of SPC/E [Ichiye and Tan, J. Chem. Phys. 124, 134504 (2006)]. The forces and torques of SSDQO water for the dipole-quadrupole, quadrupole-quadrupole, and dipole-octupole interactions are derived here. The simulations are carried out at 298 K in the microcanonical ensemble employing the Ewald method for the long-range dipole-dipole interactions. Here, various dynamical properties associated with translational and rotational motions of SSDQO water using the moments of SPC/E (SSDQO:SPC/E) water are compared with the results from SPC/E and also experiment. The self-diffusion coefficient of SSDQO:SPC/E water is found to be in excellent agreement with both SPC/E and experiment whereas the single particle orientational relaxation time for dipole vector is better than SPC/E water but it is somewhat smaller than experiment. The dielectric constant of SSDQO:SPC/E is essentially identical to SPC/E, and both are slightly lower than experiment. Also, molecular dynamics simulations of the SSDQO water model are found to be about twice as fast as three-site models such as SPC/E.  相似文献   

19.
A detailed understanding of the dynamics of liquid water at molecular level is of fundamental importance as well as have applications in many branches of science and technology. In this work, the diffusion of the TIP4P-2005 model of water is systematically investigated in liquid phase in the temperature range 210-310 K. The translational and rotational diffusions, as well as correlations between them, are examined. The effects of system size and shape are also probed in this study. The results suggest the presence of a temperature of dynamical arrest of molecular translations in the range of 150-180 K and of molecular rotations in the range of 80-130 K, depending on specific direction. A substantial change in the preferred directions of translations and rotations relative to the molecular coordinate system is observed slightly below (≈15 K) the melting temperature of the model. It is shown that there is a correlation between translational and rotational molecular motions essential for diffusion in the liquid. The presence of hydrodynamic size effects is confirmed and quantified; it is also shown that using a non-cubic simulation box for a liquid system leads to an anisotropic splitting in the diffusion tensor. The findings of this study enhance our general understanding of models of water, specifically the TIP4P-2005 model, as well as provide evidences of the direct connection between thermodynamics of liquid water and dynamics of its molecules.  相似文献   

20.
The contribution of the vapor phase to molecular diffusion in porous silica glass (Vitrapor#5; mean pore diameter 1 micrometer) partially filled with cyclohexane (nonpolar) or water (polar) was investigated with the aid of field-gradient NMR diffusometry. Due to the vapor phase, the effective diffusion coefficient of cyclohexane increased up to ten times relative to the value in bulk liquid upon reduction of the pore space filling factor. On the other hand, the effective diffusion coefficient of water first decreases and then increases when the liquid content is reduced. A two-phase exchange theory is presented accounting well for all experimental diffusion features. The diffusion behavior in the samples with micrometer pores under investigation here is in contrast to previous findings for the same solvents in a material with nanometer pores (Vycor; mean pore diameter 4 nm) where the fast-exchange limit had to be assumed [Ardelean et al., J. Chem. Phys. 119, 10358 (2003)]. It is concluded that the pore size plays a crucial role for the relevance of molecular exchange limits relative to the experimental diffusion/exchange time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号