首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A two-dimensional molecular template structure of 1,3,5-benzenetricarboxylic acid (trimesic acid, TMA) was formed on a highly oriented pyrolytic graphite surface (HOPG) by self-assembly at the liquid-solid interface. Scanning tunneling microscopy (STM) investigations show high-resolution images of the porous structure on the surface. After the host structure was created, coronene molecules were inserted as guest molecules into the pores. STM results indicate that some of the guest molecules rotate inside their molecular bearing. Further investigations show that single coronene molecules can be directly kicked out of their pores by means of STM.  相似文献   

2.
The self-assembly of cyanuric acid into ordered nanostructures on a crystalline substrate, highly ordered pyrolytic graphite (HOPG), has been investigated at low temperature under ultrahigh vacuum (UHV) conditions by means of scanning tunneling microscopy in conjunction with theoretical simulations. Many domains with different self-assembly patterns were observed. One such domain represents the formation of an open 2D rosette (cyclic) structure from the self-assembly process, the first observation of this type of structure for pure cyanuric acid on a graphite substrate. Each self-assembled domain exhibits characteristic superstructures formed through different hydrogen bond networks at low coverage and low deposition rate. Experimental observation of coexistent, two-dimensional crystalline structures with distinct hydrogen bond patterns is supported by energy minimizations and molecular dynamics calculations, which show multiple stable structures for this molecule when self-assembled on graphite.  相似文献   

3.
Trimesic acid (benzene-1, 3,5-tri-carboxylic acid; TMA) can in principle form two-dimensional hydrogen-bonded hexagonal networks in which central holes of the network have net diameters of 14 Å. Although such holes would be expected to be natural locations for guest molecules, non-catenated single networks have not been found in any of the crystals containing TMA studied in the last sixteen years. Instead, anhydrous -TMA, TMA pentaiodide (TMA.I5) and (so-called) -TMA have mutually triply-catenated structures in which triplets of networks are interlaced [3,4,5], while the hydrated complexes are based on non-catenated nets of composition TMA.H2O [6]. We have now found conditions under which single networks are preserved without catenation, the cavities being occupied by guests such as n-tetradecane, n-heptanol, n-octanol, n-decanol, octene, cyclooctane and isooctane. The structures of 2TMA. n-tetradecane and 2TMA. isooctane have been solved and refined to R=13.0% and R=11.3%, respectively, disorder of the guest molecules having prevented further refinement of the room-temperature data. Determination of the crystal structures of the other complexes, which are isostructural with 2TMA. n-tetradecane, is now in progress. We are also investigating other potential guests.  相似文献   

4.
Comprehensive self-assembly studies for nine bile acid amides of amino acid esters are reported. The number of the hydroxyl groups attached to the steroidal skeleton and the character of the amino acid ester moiety were used as variables when examining the self-assembly properties of the compounds. Two of the compounds were shown to undergo self-assembly leading to organogelation. In addition, preliminary self-assembly studies in aqueous mixtures of polar organic solvents were conducted. Microscopic methods (optical microscopy and scanning electron microscopy) were utilised in order to gain a deeper insight into the self-assembled structures. Furthermore, single-crystal X-ray structures for three of the compounds were solved.  相似文献   

5.
Short peptide stretches in amyloidogenic proteins can form amyloid fibrils in vitro and have served as good models for studying amyloid fibril formation. Recently, these amyloidogenic peptides have gained considerable attention, as non-amyloid ordered structures can be obtained from these peptides by carefully tuning the conditions of self-assembly, especially pH, temperature and presence of organic solvents. We have examined the effect of surface pressure on the self-assembled structures of two amyloidogenic peptides, Pβ(2)m (Ac-DWSFYLLYYTEFT-am) and AcPHF6 (Ac-VQIVYK-am) at the air-water interface when deposited from different solvents. Both the peptides are surface-active and form Thioflavin T (ThT) positive structures at the air-water interface. There is considerable hysteresis in the compression and expansion isotherms, suggesting the occurrence of structural rearrangements during compression. Preformed Pβ(2)m fibrillar structures at the air-water interface are disrupted as peptide is compressed to lower molecular areas but restored if the film is expanded, suggesting that the process is reversible. AcPHF6, on the other hand, shows largely sheet-like structures at lower molecular areas. The solvents used for dissolution of the peptides appear to influence the nature of the aggregates formed. Our results show that like hydrostatic pressure, surface pressure can also be utilized for modulating the self-assembly of the amyloidogenic and self-assembling peptides.  相似文献   

6.
Novel supramolecular coatings that make use of low-molecular weight ditopic monomers with guanine end groups are studied using fluid tapping AFM. These molecules assemble on highly oriented pyrolytic graphite (HOPG) from aqueous solutions to form nanosized banding structures whose sizes can be systematically tuned at the nanoscale by tailoring the molecular structure of the monomers. The nature of the self-assembly in these systems has been studied through a combination of the self-assembly of structural derivatives and molecular modeling. Furthermore, we introduce the concept of using these molecular assemblies as scaffolds to organize functional groups on the surface. As a first demonstration of this concept, scaffold monomers that contain a monomethyl triethyleneglycol branch were used to organize these "functional" units on a HOPG surface. These supramolecular grafted assemblies have been shown to be stable at biologically relevant temperatures and even have the ability to significantly reduce static platelet adhesion.  相似文献   

7.
In this study, the formation mechanism of the self-assembly structures of aqueous gold nanoparticles (NPs) was investigated through deliberately altering the species of ligands, solvent ratios, and especially solvent evaporation conditions. By analyzing UV–vis spectra, transmission electron microscope (TEM) images, and scanning electron microscope (SEM) images, it was found that the self-assembly process was dependent on both the equilibrium of various interparticle interactions in solution and the evaporation rate of solvents. The various interparticle interactions in solution generated an anisotropic interaction for one-dimension (1D) self-assembly, whereas the evaporation rate of solvents determined the specific of 1D derivative structures. Our results demonstrated an efficient protocol for spatial arrays of charged NPs with controllable morphologies.  相似文献   

8.
The ability of low molecular weight amides to support amphiphile self-assembly is shown to be a general feature for this class of solvents. This report extends the number of known polar solvents which can support amphiphile self-assembly by five new amides; more than doubling the number of known amides able to serve as amphiphile self-assembly media. The formation of lyotropic liquid crystalline phases by cationic and non-ionic surfactants in these liquid amides is reported. The ability of a solvent to promote amphiphile self-assembly is governed by the "solvophobic effect" and is linked to the solvent cohesiveness. The Gordon parameter which is a measure of the solvent cohesiveness was found to provide a guide to an amides capacity to support lyotropic liquid crystalline phase diversity and thermal stability ranges of those phases. The "solvophobic effect" and steric hindrance factors were compared between amide's and protic ionic liquids possessing analogous chemical structures and also being able to promote amphiphile self-assembly.  相似文献   

9.
3,8-Bis-hexadecyloxy-benzo[c]cinnoline (BBC16) self-assembled into two structures at highly oriented pyrolytic graphite (HOPG) surface: one was formed by molecules with a V-like configuration (C2v symmetry) and the other by molecules with a Z-like configuration (C(s) symmetry). The self-assembled structures could be tweaked by the solvents used. In the self-assembled monolayers (SAMs) on HOPG, the BBC16 molecule adopted the V-like configuration in polar solvents and the Z-like configuration in nonpolar solvents. Moreover, the solvent viscosity, solvent dissolvability of BBC16, and substrate temperature also played some roles in tuning the two-dimensional self-assembled structures.  相似文献   

10.
Seong Ryong Nam 《Tetrahedron》2008,64(46):10531-10537
Organogels were produced by the self-assembly of two organogelators, 3,5-bis(dodecanoylamino)benzoic acid and aromatic amines, in nonaromatic hydrocarbon solvents, through hydrogen bonding, aromatic stacking, and van der Waals interactions. 3,5-Bis(dodecanoylamino)benzoic acid has one carboxylic acid group for hydrogen bonding with amines and two alkylamide groups that can participate in interlayer hydrogen bonding and van der Waals interactions. The shape and size of the aromatic amines have a significant effect on the gel properties as well as their structures. A variety of organogels were realized by forming complexes of 3,5-bis(dodecanoylamino)benzoic acid and various amines with an aromatic group in nonaromatic hydrocarbon solvents.  相似文献   

11.
The systematic control over surface chemistry is a long-standing challenge in biomedical and nanotechnological applications for graphitic materials. As a novel approach, we utilize graphite-binding dodecapeptides that self-assemble into dense domains to form monolayer-thick long-range-ordered films on graphite. Specifically, the peptides are rationally designed through their amino acid sequences to predictably display hydrophilic and hydrophobic characteristics while maintaining their self-assembly capabilities on the solid substrate. The peptides are observed to maintain a high tolerance for sequence modification, allowing control over surface chemistry via their amino acid sequence. Furthermore, through a single-step coassembly of two differently designed peptides, we predictably and precisely tune the wettability of the resulting functionalized graphite surfaces from 44° to 83°. The modular molecular structures and predictable behavior of short peptides demonstrated here give rise to a novel platform for functionalizing graphitic materials that offers numerous advantages, including noninvasive modification of the substrate, biocompatible processing in an aqueous environment, and simple fusion with other functional biological molecules.  相似文献   

12.
The chiral organization of an enantiopure functional molecule on an achiral surface has been studied with the aim of understanding the influence of stereogenic centers on the self-assembly in two dimensions. A chiral tetra meso-amidophenyl-substituted porphyrin containing long hydrophobic tails at the periphery of the conjugated pi-electron system was prepared for this purpose. Scanning tunneling microscopy (STM) images of the compound at the graphite-heptanol interface reveal a chiral arrangement of the molecules, with the porphyrin rows tilted by 13 degrees with respect to the normal to the graphite axes. In terms of molecular modeling, a combination of molecular dynamics simulations on systems constrained by periodic boundary conditions and on unconstrained large molecular aggregates has been applied to reach a quantitative interpretation on both the density of the layer and its orientation with respect to the graphite surface. The results show clearly that (i) the methyl groups of the stereogenic point toward the graphite surface and (ii) the porphyrin molecules self-assemble into an interdigitated structure where the alkyl chains align along one of the graphite axes and the porphyrin cores are slightly shifted with respect to one another. The direction of this shift, which defines the chirality of the monolayer, is set by the chirality of the stereogenic centers. Such an arrangement results in the formation of a dense chiral monolayer that is further stabilized by hydrogen bonding with protic solvents.  相似文献   

13.
The adsorption and self-assembly of benzoic acid (BA), isophthalic acid (IA), and trimesic acid (TMA) on Au(111) single crystals and on Au(111-25 nm) quasi-single crystalline film electrodes have been investigated in 0.1 M HClO4 by combining in situ surface-enhanced infrared reflection absorption spectroscopy (SEIRAS) and scanning tunneling microscopy (STM) with cyclic voltammetry. All three acids are physisorbed on the electrode surface in a planar orientation at negative charge densities. Excursion to positive charge densities (or more positive potentials) causes an orientation change from planar to perpendicular. Chemisorbed structures are formed through the coordination of a deprotonated carboxyl group to the positively charged electrode surface. The three acid molecules assemble in different ordered patterns, which are controlled by π-stacking (BA) or intermolecular hydrogen bonds between COOH groups (IA, TMA). A detailed analysis of the potential and time dependencies of the ν(C=O), νs(OCO), and ν(C–OH) vibration modes shows that the strength of lateral interactions increases upon chemisorption with an increasing number of COOH groups in the sequence of BA<IA<TMA. The vibration bands shift to higher wavenumbers due to dipole–dipole coupling, Stark tuning, and electron back donation from the electrode to COO. In addition, an “indirect” electron donation to the COOH groups takes place via the conjugated molecular skeleton superimposed on the intermolecular hydrogen bonding. Figure In-situ STM images of the physisorbed and chemisorbed adlayers of isophthalic acid on Au(111)-(1 × 1), the corresponding cyclic voltammogram and principle of the ATR-SEIRAS set-up  相似文献   

14.
簇形和花形CdS纳米结构的自组装及光催化性能   总被引:3,自引:0,他引:3  
通过可控溶剂热法, 利用乙二胺作为模板制备出簇形和花形硫化镉(CdS)纳米结构. 通过X射线衍射(XRD)和扫描电镜(SEM)观测其形貌和结构特征. XRD谱线显示, 簇形CdS为六方晶体结构, 而花形CdS纳米结构则为立方晶体. 实验结果表明, 整个自组装过程是由成核以及成核竞争引起的不同生长过程所组成的, 并且乙二胺的模板功能起了重要的作用. 通过不同时间和温度的实验, 深入探讨了簇形和花形CdS纳米结构的自组装机理. 室温光致发光谱(PL)显示这两种纳米结构在433 nm和565 nm附近有较强的发射峰, 分别对应激子发射和表面缺陷发光. 通过Brunauer-Emmett-Teller (BET)方法测试其比表面积. 研究了高压汞灯照射下, 簇形和花形CdS纳米结构在甲基橙(MeO)溶液中的光催化性能. 结果显示, 由于其较大的比表面积, 花形CdS纳米结构的光催化性能要远优于其它CdS材料.  相似文献   

15.
The potential-induced adsorption and self-assembly of 1,3,5-benzene-tricarboxylic acid (TMA) was investigated at the electrified Au(111)/0.05 M H2SO4 interface by in-situ scanning tunneling microscopy (STM) and surface enhanced infrared reflection absorption spectroscopy (SEIRAS) in combination with electrochemical techniques. Depending on the applied electric field, TMA forms five distinctly different, highly ordered supramolecular adlayers on Au(111) surfaces. We have elucidated their real-space structures at the molecular scale. In the potential range -0.25 V < E < 0.20 V, planar-oriented TMA molecules form a hexagonal open-ring honeycomb structure, Ia, a hydrogen-bonded ribbon-type phase, Ib, and a herringbone-type phase, Ic, stabilized by directional hydrogen bonding and weak substrate-adsorbate interactions. Interfacial water molecules are being replaced. In 0.20 V < or = E < 0.40 V, e.g., around the potential of zero charge, and at slightly higher coverages, a close-packed physisorbed adlayer of hydrogen-bonded TMA dimers, II, was observed. Further increase of the electrode potential to positive charge densities causes an orientation change from planar to upright. An initially disordered phase, IIIa, transforms into an ordered, stripelike chemisorbed adlayer, IIIb, of perpendicularly oriented TMA molecules. One carboxylate group per molecule is bound to the electrode surface, while the two other protonated carboxyl groups are directed toward the electrolyte and act as structure-determining components of a hydrogen-bonded two-dimensional ladder-type network. Structural transitions between the various types of ordered molecular adlayers are attributed to (hole) nucleation and growth processes.  相似文献   

16.
枝状分子表面组装结构的形成与结构转变   总被引:1,自引:1,他引:0  
本文是对近期有关枝状分子在石墨表面吸附组装研究的综述.利用扫描隧道显微技术,系统研究了5-甲氧基间苯二酸类枝状分子在石墨表面组装结构的形成及结构转变,发现虽然该类枝状分子大都可以在石墨表面自发有序组装,但是最终形成的组装结构不仅与分子本身结构例如烷基链的数目有关,与分子浓度有关,还与所用溶剂有关.分子浓度和溶剂的变化,影响组装体系内的相互作用力如分子与基底间的作用力、分子间氢键的作用力等,影响分子迁移和结构转变的动力学过程,从而影响枝状分子组装的最终结构.研究揭示了特定体系中枝状分子组装结构与分子浓度、所用溶剂的定量和定性关系.研究结果有助于认识和掌握枝状分子组装规律,进而可以通过改变相关技术参数,调控得到不同的枝状分子表面组装体,为实现可控构筑分子表面组装结构提供了新的思路.  相似文献   

17.
It is shown that self-supporting graphitic structures of specific shape can be grown in a variety of forms, from nanoscale to macroscale, on metal templates, in a fuel-rich mixture of ethylene and oxygen at temperatures between 750 and 900 K. The evidence presented suggests graphite can be grown in any shape created from catalytic metals (e.g., Ni) under the proper conditions of temperature and gas composition. Structures produced include macroscale bodies, centimeters in dimension, composed of micrometer-scale graphite elements such as graphite "foam" and regular graphite "lattices". Nanoscale hollow graphite spheres were also produced. The production rate in the apparatus employed was roughly shown to be 1 layer/s and was steady with time over several hours. The process of producing self-supporting bodies generally produces hollow graphite structures, as the underlying metal template must be removed by acid following the completion of graphite growth. The process is believed to be possible only in an environment, such as combustion, in which a high concentration of particular radical species is present in the vicinity of the template surface. The following process is postulated: (i) a single layer of graphite is formed from gas-phase radicals by the catalytic action of the metal template, (ii) additional graphite growth is "autocatalytic" and occurs via the decomposition of radicals on the surface and the incorporation of "free" carbon atoms, or other radical fragments, into "edge sites" on the graphite surface.  相似文献   

18.
A comprehensive review of the features driving self-assembly of 12-hydroxystearic acid (12-HSA), a low-molecular-weight gelator, and its applications in drug delivery and as other soft innovative materials are presented herein. 12-HSA is obtained via hydrogenation of ricinoleic acid naturally found in high concentrations in castor oil. The ability of 12-HSA to self-assemble is associated with the presence, position, and enantiomeric purity of the hydroxy group along the fatty acid chain. The polarity and position of the hydroxyl group facilitates more interaction possibilities leading to its exceptional self-assembly behavior giving rise to fibers, ribbons, and tubes in a variety of solvents. Upon self-assembly, 12-HSA undergoes crystallization resulting in the formation of high aspect ratio fibrillar structures due to noncovalent, intermolecular interactions forming self-spanning, three-dimensional networks (called self-assembled fibrillar networks) in both aqueous and organic solvents. Herein, emphasis is placed on emerging applications of 12-HSA supramolecular assemblies (i.e. responsive aqueous foams, gelled complex fluids, drug delivery systems, hydrogels, organogels, xerogels, and aerogel). The vast literature is compiled associated with 12-HSA self-assembly exploring supramolecular assemblies based on one ambidextrous gelator capable of assembling in aqueous and nonaqueous solvent.  相似文献   

19.
Complexes of trimellite-dianilic acid (TMA) with aprotic amide solvents have been sythetized, separated and investigated by TG and MTA methods. It was shown that the composition of these complexes is [TMA]1 · [Sol]1. The PMR spectra were used to show the ability of TMA to undergo isomeric transitions under mild conditions in an aprotic solvent.  相似文献   

20.
Thermal analysis techniques were performed to reveal ‘crystalline solvate’ behavior between organic compounds and polar solvents. Diimide-dicarboxylic acid (DIDA) was formed by reacting 3,3'-diaminodiphenylsulfone (3,3'-DPS) or 4,4'-diaminodiphenylsulfone (4,4'-DPS) with trimellitic anhydride (TMA) in some polar solvents (PSv). The products could crystallize upon cooling in a polar solvent media to form a solvate containing a finite quantity of solvents, leading to what can be termed as ‘crystalline solvates’ (CS). This study has demonstrated that sampling techniques in TG and DSC must be kept to be as similar as possible, which is a critical point in practices of thermal analysis techniques. DSC analysis revealed that there are two endothermic peaks in the CS, with the lower one being the de-solvate temperature of CS (T d) at which the solvated solvent molecules were removed, and the higher peak being the melting point of the de-solvated DIDA (T m). T d was found to vary with the types of polar solvents and structures of DIDA. The TG result indicated that most of the sulfone-based DIDA-CS contained 2 moles of solvent per mole of solvate. X-ray analysis revealed that different crystalline structures were found for DIDA-CS solvated with different solvent molecules, but all de-solvated DIDA possessed the same crystal unit. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号