首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retention behaviors of alkyl phosophates were studied on a series of ionic liquid gas chromatography columns. The selectivity of the IL columns for alkyl phosphates were compared with a 5% phenyl column as a route to evaluating the potential use of IL columns in the analysis of alkyl phosphates in petroleum samples in both one- and multi-dimensional GC. Most interestingly, we demonstrate for the first time the dependence of elution order on separation temperature for members of a homologous series of compounds. At low temperatures it was found that trihexyl phosphate eluted before trioctyl phosphate, while at higher temperatures this pattern was reversed.  相似文献   

2.
Ionic liquids (ILs), a class of unique substances composed purely by cation and anions, are renowned for their fascinating physical and chemical properties, such as negligible volatility, high dissolution power, high thermal stability, tunable structure and miscibility. They are enjoying ever-growing applications in a great diversity of disciplines.  相似文献   

3.
First‐ and second‐dimension retention times for a series of alkyl phosphates were predicted for multiple column combinations in GC×GC. This was accomplished through the use of a three‐parameter thermodynamic model where the analytes’ interactions with the stationary phases in both dimensions are known. Ionic liquid columns were employed to impart unique selectivity for alkyl phosphates, and it was determined that for alkyl phosphate compounds, ionic liquid columns are best used in the primary dimension. Retention coordinates for unknown phosphates are predicted from the thermodynamic parameters of a set standard alkyl phosphates. Additionally, we present changing retention properties of alkyl phosphates on some ionic liquid columns, due to suspected reaction between the analyte and column. This makes it difficult to accurately predict their retention properties, and in general poses a problem for ionic liquid columns with these types of analytes.  相似文献   

4.
Surface‐bonded zwitterionic stationary phases have shown highlighted performances in separation of polar and hydrophilic compounds under hydrophilic interaction chromatography mode. So, it would be helpful to evaluate the characteristics of zwitterionic stationary phases with different arranged charged groups. The present work involved the preparation and comparison of three zwitterionic stationary phases. An imidazolium ionic liquid was designed and synthesized, and the cationic and anionic moieties respectively possessed positively charged imidazolium ring and negatively charged sulfonic groups. Then, the prepared ionic liquid, phosphorylcholine and an imidazolium‐based zwitterionic selector were bonded on the surface of silica to obtain three zwitterionic stationary phases. The selectivity properties were characterized and compared through the relative retention of selected solute pairs, and different kinds of hydrophilic solutes mixtures were used to evaluate the chromatographic performances. Moreover, the zwitterionic stationary phases were further characterized by the modified linear solvation energy relationship model to probe the multiple interactions. All the results indicated that the types and arrangement of charged groups in zwitterionic stationary phases mainly affect the retention and separation of ionic or ionizable compounds, and for interaction characteristics the contribution from n and π electrons and electrostatic interactions displayed certain differences.  相似文献   

5.
6.
7.
Summary The retention behavior of 15 peropyrene-type polycyclic aromatic hydrocarbons was investigated on various bonded stationary phases in reversed-phase liquid chromatography. On diphenyl and naphthylethyl bonded phases, high correlations were obtained between the molecular polarizability of solutes and their retention. However, very low or no correlations were found on various octadecyl bonded phases. These facts are discussed by using the electrostatic interaction concept between the solutes and the stationary phase. We conclude that these observations are due to two reasons: the difference in the degree of planarity of polycyclic aromatic hydrocarbons and the high ability of planarity recognition of octadecyl bonded phases.  相似文献   

8.
Xylose and glucose, as the main hydrolyzed products of plant cell wall, were separated by silica-confined ionic liquid (IL) stationary phases. Five different stationary phases were synthesized and characterized. Instead of using the traditional NH2 column, the imidazolium stationary phases exhibit excellent retention to the xylose and glucose. The retention factor and resolution of the monosaccharides decreased with decreasing acetonitrile concentration. In addition, the effects of the IL cations and anions on the retention of xylose and glucose were studied and the adsorption behavior of these two monosaccharides on the stationary phases was investigated. Then the mobile phase and temperature were optimized to improve the performance for the separation of xylose and glucose.  相似文献   

9.
The interest of using ionic liquids (ILs) as stationary phases in gas chromatography (GC) has increased in recent years. This is largely due to the fact that new classes of ILs are being developed that are capable of satisfying many of the requirements of GC stationary phases. This review highlights the major requirements of GC stationary phases and describes how molten salts/ILs can be designed to largely meet these needs. The retention characteristics of organic solutes will be discussed for ammonium, pyridinium, and phosphonium-based molten salts followed by imidazolium, pyridinium, pyrollidinium, and phosphonium-based IL stationary phases. The versatility of ILs allows for the development of stationary phases based on dicationic ILs, polymeric ILs, and IL mixtures. To aid in choosing the appropriate IL stationary phase for a particular separation, the reader is guided through the different types of stationary phases available to identify those capable of providing the desired separation selectivity of organic solutes while allowing for flexibility in ranges of temperature used throughout the separation.  相似文献   

10.
Poly(ionic liquid)‐modified stationary phases can have multiple interactions with solutes. However, in most stationary phases, separation selectivity is adjusted by changing the poly(ionic liquid) anions. In this work, two poly(ionic liquid)‐modified silica stationary phases were prepared by introducing the cyano or tetrazolyl group on the pendant imidazolium cation on the polymer chains. Various analytes were selected to investigate their mechanism of retention in the stationary phases using different mobile phases. Two poly(ionic liquid)‐modified stationary phases can provide various interactions toward solutes. Compared to the cyano‐functionalized poly(ionic liquid) stationary phase, the tetrazolyl‐functionalized poly(ionic liquid) stationary phase provides additional cation‐exchange and π‐π interactions, resulting in different separation selectivity toward analytes. Finally, applicability of the developed stationary phases was demonstrated by the efficient separation of nonsteroidal anti‐inflammatory drugs.  相似文献   

11.
12.
13.
L. Szepesy  V. Háda 《Chromatographia》2001,54(1-2):99-108
Summary Eight commercially available reversed-phase (RP) columns of widely different characteristics were evaluated and compared using the linear solvation energy relationships (LSER). Retention factors of 32 solutes of different types were determined under isocratic conditions using an acetonitrile-water (30∶70) mobile phase. Stationary phase properties were compared by the fitting coefficients of the LSER-based regression equations which are characteristic of the individual stationary phases and represent the extent of various molecular interactions contributing to the retention process. The good agreement between the calculated and measured logk values for different type of compounds support the adequacy and applicability of the LSER model to describe chromatographic retention. Characterization of column performance for the separation of various type of compounds was established by the determination of the different selectivity factors representing hydrophobic selectivity, polar selectivity and specific selectivity.  相似文献   

14.
The retention behavior of a large group of analytes (35) with varied properties (pKa and logP) was studied on eight hydrophilic interaction LC columns with different surfaces, stationary phase chemistries, and types of particles. The acetonitrile content (5–95%), buffer concentration (0.5–200 mM), and pH of the mobile phase (3.8 and 6.8) were evaluated for their effects on the retention behavior. The type of stationary phase had a significant impact on the selectivity and retention time of the tested analytes. Completely different selectivity was observed on the aminopropyl stationary phase. In this study, the influence of the buffer concentration was similar for all tested columns, except for the aminopropyl stationary phase. Increasing the buffer concentration led to decreased retention times for the basic compounds and increased retention times for the acidic compounds, while the inverse behavior was observed on the aminopropyl stationary phase. The selectivity of the individual stationary phases was evaluated at pH 3.8 and 6.8. Much lower selectivity differences between the stationary phases were observed at pH 6.8 than pH 3.8. Bare silica stationary phases were used in the comparison of the particles (fused‐core and fully porous particles of 3 and 1.7 μm) and the columns provided by different manufacturers.  相似文献   

15.
以双-三氟甲烷磺酰亚胺离子([NTf2-)、三氟甲基磺酸根离子([TFO]-)和六氟磷酸根离子([PF6-)为阴离子,合成了含有丙基、丁基、壬基、乙苯基或氰甲基等阳离子取代基的聚合乙烯基咪唑基离子液体固定相,制备了13种离子液体石英毛细管色谱柱。考察了离子液体固定相结构与色谱柱McReynolds常数、热稳定性和测试化合物保留行为之间的构效关系,研究了阳离子取代基对固定相保留性能的影响规律;同时考察了测试化合物保留指数随温度变化的规律。结果表明,所合成的离子液体固定相具有较强的极性,其保留性能不仅与阳离子取代基的性质密切相关,而且受取代基结构和阴离子影响明显;在考察的温度范围内,测试化合物的保留指数变化规律与传统色谱固定相完全相同。  相似文献   

16.
Iodinated X‐ray contrast media are the most widely used pharmaceuticals for intravascular administration in X‐ray diagnostic procedures. The increasing concern of the fate of these compounds into the environment has led to the development of analytical methods to determine them. However, these methods present problems due to the polar character of these analytes. In this paper, hydrophilic interaction LC is presented as an alternative technique. The retention of iodinated X‐ray contrast media was studied in two bare silica phases with different particle designs (i.e. porous and Fused Core?) and a zwitterionic sulfoalkylbetaine phase. The effect of the most important parameters of the mobile phase was studied for each stationary phase. It was observed that optimal mobile phase conditions included buffers with a high buffering capacity. Additionally, the retention mechanisms involved were studied in order to provide some insight into the possible occurring interactions. The contributions of partition and adsorption and the effect of the temperature on the retention of analytes were evaluated on all of the stationary phases.  相似文献   

17.
18.
Summary The correlation between the retention data of polyaromatic hydrocarbons (PAH) obtained in normal-and reversed-phase liquid chromatography is investigated in order to determine the dominant factors controlling the retention. It is clear that the separation of PAHs on various chemically-bonded packing materials in normal- and/or reversed-phase modes is primarily controlled by the molecular structure and shape. The -electron interaction between the solute and the stationary phase also contributes to the retention, although pure silica shows a somewhat different behavior.  相似文献   

19.
20.
This paper describes the results of the evaluation of a new solvation parameter model for reversed-phase ion-pair chromatography by linear gradient elution. This model is described as . The first six terms are the usual solvation parameter equation for neutral solutes, and the seventh term represents the contribution to retention from solute’s ionization. The last term describes the retention increase due to ion-pair effect. Retention times obtained for 60 solutes (neutral, acidic and basic) in acetonitrile/aqueous mobile phases with different ion-pair reagents (phosphoric acid, trifluoroacetic acid, heptafluorobutyric acid, perchloric acid, and hexafluorophosphoric acid) are used to evaluate the capability of the function. It is concluded that the model describes the retention of ionizable/ionized compounds under ion-pair conditions very well. Accordingly, the function extends the application of linear solvation energy relationships (LSERs) to ionizable compounds in ion-pair chromatography, and allows us to easily predict their retention for chromatographic optimization, including selectivity optimization and internal standard selection. Finally, the conclusion can be extended to ioscratic elution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号