首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设矩阵X=(xij) ∈Rn×n, 如果xij=xn+1-i, n+1-j (i,j=1,2, …,n), 则称X是中心对称矩阵. 该文构造了一种迭代法求矩阵方程A1X1B1+A2X2B2+…+AlXlBl=C的中心对称解组(其中[X1, X2, …, Xl]是实矩阵组). 当矩阵方程相容时, 对任意初始的中心对称矩阵组[X1(0), X2(0), …, Xl(0)], 在没有舍入误差的情况下,经过有限步迭代,得到它的一个中心对称解组, 并且, 通过选择一种特殊的中心对称矩阵组, 得到它的最小范数中心对称解组. 另外, 给定中心对称矩阵组[X1, X2, …, Xl], 通过求矩阵方程A1X1B1+A2X2B2+…+AlXlBl=C(其中C=C-A1X1B1-A2X2B2-…-AlXlBl)的中心对称解组, 得到它的最佳逼近中心对称解组. 实例表明这种方法是有效的.  相似文献   

2.
1引言子矩阵约束下的矩阵方程问题是指限定矩阵方程的解X的一个子矩阵X_(0),然后在某个约束集合中求解矩阵方程.如求满足X([1:q])=X_(0)的对称解,这里X([1:q])表示矩阵X的q阶顺序主子阵.子矩阵约束下的矩阵方程问题来源于实际中的系统扩张问题[1],有一定的实际意义和重要性,受到了许多学者的关注,如[2-4]中,彭分别研究了子矩阵约束条件下实矩阵方程AX=B的实矩阵解,中心对称解和双对称解.  相似文献   

3.
The matrix least squares (LS) problem minx ||AXB^T--T||F is trivial and its solution can be simply formulated in terms of the generalized inverse of A and B. Its generalized problem minx1,x2 ||A1X1B1^T + A2X2B2^T - T||F can also be regarded as the constrained LS problem minx=diag(x1,x2) ||AXB^T -T||F with A = [A1, A2] and B = [B1, B2]. The authors transform T to T such that min x1,x2 ||A1X1B1^T+A2X2B2^T -T||F is equivalent to min x=diag(x1 ,x2) ||AXB^T - T||F whose solutions are included in the solution set of unconstrained problem minx ||AXB^T - T||F. So the general solutions of min x1,x2 ||A1X1B^T + A2X2B2^T -T||F are reconstructed by selecting the parameter matrix in that of minx ||AXB^T - T||F.  相似文献   

4.
-j协 ,llweJ 路 1.引言文「1〕证明了命题:设A,B是。阶正定矩阵,则}勿‘一卜“!,一〔·+”’ 1 11!A+B!“)}A}”+IBI”(1)等号成立当且仅当A=无B(lc>0). 其后,吴忠民[2]、吴爱军[劫又分别给出了(约的两种不同的证法.本文则将建立一个比(1)更强的正定矩阵不等式.全文约定A>O表示矩阵A正定,I,=只·I(又>0)为数量矩阵;如不特别说明,本文中的矩阵均指n阶实矩阵. 定理设滩>0,刀>0,,A}>J几;{,,BJ>11目,则一挤(加一扩(IA+Bl一,z。+z。.)篇等号成立当且仅当几‘/a=拼‘/b.(公一=1,2,,二,忍). 证明:令‘=兀兄:一‘,少二且。,一””· ‘=1…  相似文献   

5.
A题组新编1.(甘志国)(1)1!×1+2!×2+3!×3+…+ 66!×66被2010除的余数等于____ (2)求数列{(n+2)/(n!+(n+1)!+(n+2)!)}的前n项和。2.(陈世明)已知s,t∈(-1,1),两个方程x~2+ 2sx+t=0与x~2+2tx+s=0,求(1)都有实根的概率为____; (2)至少一个方程有实根的概率为____。B藏题新掘  相似文献   

6.
文[1]、[2]用两种方法证明了命题:设A,B是n阶正定矩阵,则有|A B|~(1/n)≥|A|~(1/n) |B|~(1/n)等号成立当且仅当A=kB(k>0)。本文用矩阵迹的概念给出一个不同的证明。我们首先证明下面两个引理。  相似文献   

7.
正1引言设C~(m×n)表示m×n阶复矩阵的集合,I_n表示n阶单位矩阵.对于矩阵A∈C~(m×n),A~*表示它的共轭转置矩阵.设矩阵A∈C~(n×n),如果A~2=A,则称矩阵A为幂等矩阵;如果A~2=A=A~*,则称矩阵A为正交投影矩阵.设A∈C~(n×n)本文主要研究下面的二次矩阵方程AXA=XAX,(1.1)称之为Yang-Baxter-like方程,因为其与统计物理中分别由Yang[1]和Baxter[2]独立得到的经典Yang-Baxter方程相似.  相似文献   

8.
1 引言 设A为m×m方阵,I为m阶单位阵,考虑关于X的非线性矩阵方程 I=X+A~HX~(-1)A的Hermite正定解问题。这是特殊的离散代数Riccati方程,在一定条件下与离散代数Riccati方程数学等价。由于离散代数Riccati方程还缺乏普遍有效的数值解法,因此研究(1.1)的数值处理就十分重要。最近,Engwerda等学者研究了c1)、c2)方程(1.1)可解的充分必要条件、最大解和最小解的存在唯一性,还提出如下简单迭代 X_o=I,X_(n+1)=I-A~HX_n~(-1)A,n=0,1,….(1.2) 证明了{X_n}_(n=0)~∞收敛于(1.1)的极大解X_L.这项研究为数值求解(1.1)提供了可能.本文研究下述三方面问题.首先是(1.2)的误差估计,它同时也是迭代过程(1.2)的收敛速度估计.然后给出一种执行格式.由于(1.2)每迭代一步要计算一个m阶方阵的逆矩阵,计算量很大,因而提出有效的执行格式是必要的.最后研究极大解X_L的扰动定理. 若不特别说明,以下的记号都是常规的,例如可参阅[3]. 2 误差估计 令A的数值半径为ω(A).Engwerda和Ran证明了下列结果:设A可逆,那么(1.1)存在对称正定解的充要条件为ω(A)≤1/2;若(1.1)有对称正定解则有唯一的最大解X_L;若(1.1)有对称正定解,则(1.2)产生的矩阵序列{X_n}收敛到X_L,且收敛过程是单调下降的.  相似文献   

9.
设A∈C~(m×n),B∈C~(m×p)及四个矩阵方程:1)AGA=A,2)GAG=G,3)(AG)~*=AG,4)(GA)~*=GA如果G满足上述方程i),j),…k),则称G为(ij…k)型逆或penrose型广义逆,简称广义逆,并记为A(ij…k).其全体记为A{ij…k},利用矩阵广义逆的理论研究了下列两类等式成立的的充要条件:I)其中α+β=1,α>0,β>0,1≤i相似文献   

10.
矩阵方程aX^2+bX+cIn=0的一种解法   总被引:2,自引:2,他引:0  
王建锋 《大学数学》2003,19(3):89-91
提出了矩阵方程aX2+bX+cIn=O,a,b,c∈R且a≠0,In是n阶单位矩阵,X∈Cn×n的一种解法.首先将方程转化为Y2=O或In,然后讨论了Y的所有解,最后根据转化式,得到了原方程中X的所有解.  相似文献   

11.
矩阵方程X+A~*X~(-q)A=I(q>0)的Hermite正定解   总被引:15,自引:2,他引:13  
1.引言 本文研究矩阵方程 X+A*X-qA=I (1)的Hermite正定解,其中I是一个n×n阶单位矩阵, A是一个n×n阶复矩阵, q是实数且q>0.q=1,q=2时的方程是从动态规划,随机过滤,控制理论和统计学中推导出来的,最近已有许多人对此进行了研究(见参考文献[1,2,4]),本文我们将研究方程(1)的解的存在性和解的性质,并讨论迭代求解及迭代解的收敛性. 对于Hermite矩阵X和Y,文中X≥Y表示X-Y是半正定的,X>y表示X-Y是正定的;对于方阵M,M*表示M的共轭转置,ρ(M)表示M的谱半径,λi(M)  相似文献   

12.
高次矩阵方程f(X)=0的一种解法   总被引:1,自引:0,他引:1  
关于m次矩阵方程Xm+a1Xm-1+…+am-1X+amEn=0,其中En是n阶单位矩阵,a1,a2,…,am∈R,X∈Cn×n,本文利用矩阵的化零多项式,最小多项式的相关结论以及Jordan标准形分解,讨论了该方程的所有可能解.  相似文献   

13.
叶强 《计算数学》1987,9(3):225-232
§1.引言 Hermite矩阵的特征值反问题是Downing和Householder在[2]中提出的,其形式如下: 问题A. 给定Hermite矩阵A,k个非零实数λ_1…,λ_k,以及满足r_+r_1+…+r_k=n的k+1个非负整数r_1,r_1,…,r_k,求一实对角矩阵D=diag(d_1,…,d_n),使得A+D的特征值为0,λ_1,…,λ_k,并且相应的重数为 r_0,r_1,…,r_k.  相似文献   

14.
<正>等差数列{a_n}的首项为a_1,公差为d,其前n项和可以表示为:S_n=An2+Bn(A=d/2,B=a_1-d/2)(1).若已知数列的前n项和为S_n=An2+Bn(A=d/2,B=a_1-d/2)(1).若已知数列的前n项和为S_n=An2+Bn(A,B为常数),则可证得{a_n}为等差数列.本文谈谈如何运用公式(1)解决问题.1求S_n最值的问题例1已知等差数列{a_n}的前n项和为S_n,S_(12)>0,S_(13)<0,求S_n取得最大值时n的值.解由题意可设S_n=An2+Bn(A,B为常数),则可证得{a_n}为等差数列.本文谈谈如何运用公式(1)解决问题.1求S_n最值的问题例1已知等差数列{a_n}的前n项和为S_n,S_(12)>0,S_(13)<0,求S_n取得最大值时n的值.解由题意可设S_n=An2+Bn(n∈N*)且A<0,二次函数f(x)=Ax2+Bn(n∈N*)且A<0,二次函数f(x)=Ax2+Bx开口向下,f(0)=0,f(12)>0,f(13)<0,其对称轴x=x_0(x_0∈(6,6.5)),所以当n=6时,S_n取得最大值.  相似文献   

15.
1引言 本文研究矩阵方程X A'X-qA=Q (1) 在A是n阶非奇异复矩阵,Q是n阶Hermitian正定矩阵,q≥1时的Hermitian正定解.矩阵方程(1)在控制理论、梯形网络、动态规划和统计学等领域有着广泛的应用(见文[1,5,7,8]).  相似文献   

16.
定义1 令n≥3,A=(a_(ij))_(n×n),i=1或0,对任固定的i(1≤i≤n)存在唯一的一个j_o(1≤j_o≤h)使得a(ij)_o=1,其余的a(ij)=0(j jo,1≤j≤n),则称(0,1)一矩阵A为A型的矩阵。 显然A型矩阵在矩阵乘法运算下成为一个具有单位元的半群。 定理2 令A={A:A是n级的A型矩阵},B A,若对任A A总存在有B_1,B_2,…B_K B使得A=B_1B_2…B_K,则称S为A的一个基。  相似文献   

17.
在学习直线与圆锥曲线的位置关系时,不少学生使用韦达定理具有一定的盲目性.特别是遇到较复杂的问题时,更是如此.对此,在教学中我们给学生装上“轨迹思想”的方向盘,使问题有了很好的解决.我们引入弦的端点坐标(x1,y1),(x2,y2),构造点(x2+x2,x1x2),或点(y1+y2,y1y2),先求出点的轨迹方程,再结合韦达定理求出该点的坐标,代入所求轨迹方程,或利用点的存在域x1x2≤14(x1+x2)2,然后求解.这样处理,思路清晰,许多问题迎刃而解.例1已知A,B为抛物线y2=2px(p>0)上两点,且OA⊥OB,原点O在AB上的射影为D(2,1),求此抛物线方程.解设A,B的坐标分别为(x1…  相似文献   

18.
广义逆A(2)T,S的子式   总被引:1,自引:0,他引:1  
1.引言 设A∈Cm×n,M和N分别为m和n阶Hermite正定阵,考虑下列方程 (1) AXA = A (2) XAX = X (3) (AX)* = AX (4) (XA)* = XA (3M) (MAX)* = MAX (4N) (NXA)* = NXA 如果X∈Cm×m满足条件(1)和(2),则称X为A的自反广义逆,记作X=A(1,2);如果X满足条件(2),则称X为A的{2}逆,记作X=A(2);如果X满足(1)-(4),则称X为A的M-P逆,记作X=A+;如果X满足(1)、(2)、(3M)、(4N),则称X为A的加权M-P逆,记作A+MN.  相似文献   

19.
王建锋 《大学数学》2004,20(4):84-88
提出了高阶常系数非齐次线性微分方程y(n)+P1y(n-1)+…+Pny=f(x)(P1,P2,…,Pn是实数)的一种新解法.首先将该方程降为n个一阶非齐次线性微分方程组:y1′-w1y1=f(x),y2′-w2y2=y1,…………………yn′-wnyn=yn-1,其中w1,w2,…,wn是对应的齐次方程的特征方程tn+P1tn-1+…+Pn=0的n个根.然后求出它的通解y=yn,最后得出了求原方程一个特解的迭代公式.  相似文献   

20.
线性流形上的广义中心对称矩阵反问题   总被引:4,自引:0,他引:4  
袁永新  戴华 《计算数学》2005,27(4):383-394
设R∈Cn×n是满足R=RH=R-1≠±In的广义反射矩阵.若A∈Cn×n满足RAR=A,则称A为n阶广义中心对称矩阵,n阶广义中心对称矩阵的全体记为GCSCn×n.令X1,Z1∈Cn×k1,Y1,W1∈Cn×l1,S={A|‖AX1-Z1‖2+‖Y1HA-W1H‖2=min,A∈GCSCn×n},本文研究如下问题.问题Ⅰ.给定矩阵Z2,X2∈Cn×k2,Y2,W2∈Cn×l2,求A∈S,使得其中‖·‖是Frobenius范数.问题Ⅱ.给定矩阵A∈Cn×n,求A∈SE,使得其中SE是问题Ⅰ的解集合.本文给出了问题Ⅰ解集合SE的表达式,并导出了矩阵方程AX2=Z2,Y2HA=W2H有解A∈S的充分必要条件及其通解表达式,并给出了问题Ⅱ解的表达式以及求解问题Ⅱ的数值方法和数值例子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号