首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文综述凝聚态物理学中的量子相变和量子临界现象,首先考察了相变中存在量子效应的可能性,通过横磁场Ising模型介绍了量子相变的基本特征;接下来对照热临界现象,引入了量子标度和量子重正化的基本概念和操作方式;然后利用量子临界现象的方案,分析了密度驱动、无序驱动和关联驱动的金属-绝缘体相变;继续利用量子临界性的概念探讨如重电子化合物、铜氧化物和巡游铁磁体这类复杂的相互作用多粒子系统;最后选择量子点、碳纳米管和单层石墨为例,介绍了量子临界性在低维和纳米系统研究中的作用.  相似文献   

2.
Quantum phase transitions occur at zero temperature when some non‐thermal control‐parameter like pressure or chemical composition is changed. They are driven by quantum rather than thermal fluctuations. In this review we first give a pedagogical introduction to quantum phase transitions and quantum critical behavior emphasizing similarities with and differences to classical thermal phase transitions. We then illustrate the general concepts by discussing a few examples of quantum phase transitions occurring in electronic systems. The ferromagnetic transition of itinerant electrons shows a very rich behavior since the magnetization couples to additional electronic soft modes which generates an effective long‐range interaction between the spin fluctuations. We then consider the influence of rare regions on quantum phase transitions in systems with quenched disorder, taking the antiferromagnetic transitions of itinerant electrons as a primary example. Finally we discuss some aspects of the metal‐insulator transition in the presence of quenched disorder and interactions.  相似文献   

3.
In this article we review the physical characteristics of quantum cascade transitions (QCTs) in various nanoscopic systems. The quantum cascade laser which utilizes such transitions in quantum wells is a brilliant outcome of quantum engineering that has already demonstrated its usefulness in various real-world applications. After a brief introduction to the background of this transition process, we discuss the physics behind these transitions in an externally applied magnetic field. This has unravelled many intricate phenomena related to intersubband resonance and electron relaxation modes in these systems. We then discuss QCTs in a situation where the quantum wells in the active regions of a quantum cascade structure are replaced by quantum dots. The physics of quantum dots is a rapidly developing field with its roots in fundamental quantum mechanics, but at the same time, quantum dots have tremendous potential applications. We first present a brief review of those aspects of quantum dots that are likely to be reflected in a quantum-dot cascade structure. We then go on to demonstrate how the calculated emission peaks of a quantum-dot cascade structure with or without an external magnetic field are correlated with the properties of quantum dots, such as the choice of confinement potentials, shape, size and the low-lying energy spectra of the dots. Contents PAGE 1 Introduction 456 2 Intersubband transitions in quantum wells 458 3 Quantum cascade transitions 462 3.1. Basic principles 462 3.1.1. Minibands and minigaps 464 3.1.2. Vertical transitions 464 3.1.3. GaAs/AlGaAs quantum cascade lasers 464 3.1.4. QCLs based on superlattice structures 465 3.1.5. Type-II quantum cascade lasers 466 3.1.6. Recent developments 466 3.2. Applications: sense-ability and other qualities 466 4 Quantum cascade transitions in novel situations 467 4.1. External magnetic field 467 4.1.1. Parallel magnetic field 468 4.1.2. Many-body effects: depolarization shift 470 4.1.3. The role of disorder 471 4.1.4. Tilted magnetic field 475 4.2. Magneto-transport experiments and phonon relaxation 479 4.3. Magneto-optics experiment and phonon relaxation 484 5 A brief review of quantum dots 485 5.1. From three- to zero-dimensional systems 485 5.2. Making the dots 487 5.2.1. Lithographic patterning 487 5.2.2. Self-assembled quantum dots 488 5.3. Shell filling in quantum dots 489 5.4. Electron correlations: spin states 490 5.5. Anisotropic dots 491 5.6. Influence of an external magnetic field 491 5.6.1. The Fock diagram 491 5.6.2. The no-correlation theorem 492 5.6.3. Correlation effects and magic numbers 492 5.6.4. Spin transitions 493 5.7. Quantum dots in novel systems 494 5.8. Potential applications of quantum dots 494 5.8.1. Single-electron transistors (SETs) 494 5.8.2. Single-photon detectors 494 5.8.3. Single-photon emitters 495 5.8.4. Quantum-dot lasers 495 6 Quantum cascade transitions in quantum-dot structures 496 6.1. Quantum dots versus quantum wells 496 6.2. QCT with rectangular dots 497 6.2.1. Vertical transitions 500 6.2.2. Diagonal transitions 501 6.3. QCT in a parabolic dot 504 6.4. Magnetic field effects on intersubband transitions 506 6.5. Mid-IR luminescence from a QD cascade device 512 7 Summary and open questions 513 Acknowledgements 515 References 515  相似文献   

4.
Dynamics of a quantum phase transition   总被引:1,自引:0,他引:1  
We present two approaches to the dynamics of a quench-induced phase transition in the quantum Ising model. One follows the standard treatment of thermodynamic second order phase transitions but applies it to the quantum phase transitions. The other approach is quantum, and uses Landau-Zener formula for transition probabilities in avoided level crossings. We show that predictions of the two approaches of how the density of defects scales with the quench rate are compatible, and discuss the ensuing insights into the dynamics of quantum phase transitions.  相似文献   

5.
The blend of spin topological filtering and the spin state selective detection of single quantum transitions by the two dimensional multiple quantum-single quantum correlation and higher quantum resolved techniques have been employed for simplifying the complexity of scalar coupled 1H NMR spectra. The conventional two dimensional COSY and TOCSY experiments, though identify the coupled spin networks, fail to differentiate them due to severe overlap of transitions. Non-selective excitation of homonuclear higher quantum of protons results in filtering of spin systems irrespective of their spin topologies. The spin state selection by passive 19F spins provides fewer transitions in each cross section of the single quantum dimension simplifying the analyses of the complex spectra. The degenerate single quantum transitions are further discerned by spin selective double and/or triple quantum resolved experiments that mimic simultaneous heteronuclear and selective homonuclear decoupling in the higher quantum dimension. The techniques aided the determination of precise values of spectral parameters and relative signs of the couplings.  相似文献   

6.
Phenomena analogous to ground state quantum phase transitions have recently been noted to occur among states throughout the excitation spectra of certain many-body models. These excited state phase transitions are manifested as simultaneous singularities in the eigenvalue spectrum (including the gap or level density), order parameters, and wave function properties. In this article, the characteristics of excited state quantum phase transitions are investigated. The finite-size scaling behavior is determined at the mean-field level. It is found that excited state quantum phase transitions are universal to two-level bosonic and fermionic models with pairing interactions.  相似文献   

7.
We investigate quantum phase transitions in XY spin models using Dzyaloshinsky-Moriya(DM) interactions. We identify the quantum critical points via quantum Fisher information and quantum coherence, finding that higher DM couplings suppress quantum phase transitions. However, quantum coherence(characterized by the l_1-norm and relative entropy) decreases as the DM coupling increases. Herein, we present both analytical and numerical results.  相似文献   

8.
Intersublevel transitions in semiconductor quantum dots are transitions of a charge carrier between quantum dot confined states. In InAs/GaAs self-assembled quantum dots, optically active intersublevel transitions occur in the mid-infrared spectral range. These transitions can provide a new insight on the physics of semiconductor quantum dots and offer new opportunities to develop mid-infrared devices. A key feature characterizing intersublevel transitions is the coupling of the confined carriers to phonons. We show that the effect of the strong coupling regime for the electron–optical phonon interaction and the formation of mixed electron–phonon quasi-particles called polarons drastically affect and control the dynamical properties of quantum dots. The engineering of quantum dot relaxation rates through phonon coupling opens the route to the realization of new devices like mid-infrared polaron lasers. We finally show that the measurement of intersublevel absorption is not limited to quantum dot ensembles and that the intersublevel ultrasmall absorption of a single quantum dot can be measured with a nanometer scale resolution by using phonon emission as a signature of the absorption. To cite this article: P. Boucaud et al., C. R. Physique 9 (2008).  相似文献   

9.
T.K. Ng 《哲学杂志》2015,95(26):2918-2947
We provide an overview of some modern developments in the theory of phases and phase transitions in classical and quantum systems. We show the link between non-ergodicity and fidelity in quantum systems and discuss topological phase transitions. We show that the quantum phase transitions are associated with qualitative changes in some properties of the quantum wavefunctions across the phase transition. We discuss the topological phase transition associated with p-wave superconductor since it is a topic of wide interest because of the possible observation of Majorana fermions.  相似文献   

10.
We show that quantum correlations as quantified by quantum discord can characterize quantum phase transitions by exhibiting nontrivial long-range decay as a function of distance in spin systems. This is rather different from the behavior of pairwise entanglement, which is typically short-ranged even in critical systems. In particular, we find a clear change in the decay rate of quantum discord as the system crosses a quantum critical point. We illustrate this phenomenon for first-order, second-order, and infinite-order quantum phase transitions, indicating that pairwise quantum discord is an appealing quantum correlation function for condensed matter systems.  相似文献   

11.
The effects of hydrostatic pressure and size quantization on the binding energies of a hydrogen-like donor impurity in cylindrical GaAs quantum dot (QD) with Morse confining potential are studied using the variational method and effective-mass approximation. In the cylindrical QD, the effect of hydrostatic pressure on the binding energy of electron has been investigated and it has been found that the application of the hydrostatic pressure leads to the blue shift. The dependence of the absorption edge on geometrical parameters of cylindrical QD is obtained. Selection rules are revealed for transitions between levels with different quantum numbers. It is shown that for the radial quantum number, transitions are allowed between the levels with the same quantum numbers, and any transitions between different levels are allowed for the principal quantum number.  相似文献   

12.
We study the relationship between the behavior of global quantum correlations and quantum phase transitions in XY model. We find that the two kinds of phase transitions in the studied model can be characterized by the features of global quantum discord (GQD) and the corresponding quantum correlations. We demonstrate that the maximum of the sum of all the nearest neighbor bipartite GQDs is effective and accurate for signaling the Ising quantum phase transition, in contrast, the sudden change of GQD is very suitable for characterizing another phase transition in the XY model. This may shed lights on the study of properties of quantum correlations in different quantum phases.  相似文献   

13.
The photoluminescence excited by He:Ne and Nd:YAG lasers of GaAs/Ga0.75Al0.25As multiple quantum well heterostructures grown by MBE was measured as a function of temperature from 4.2 K up to room temperature and for different pumping powers at constant temperature. The excitonic transitions associated with carriers confined in the quantum wells as well as other transitions associated with impurities either already present in the substrates or introduced into the samples during growth are identified in the spectra and fully characterized. From Arrhenius plots of the photoluminescence peak integrated intensities versus inverse temperature, activation energies are estimated for acceptor defects in the samples as well as for quantum well related excitonic transitions. Photoluminescence polarization experiments demonstrate a dramatic manifestation of the selection rules governing heavy hole and light hole optical transitions in quantum wells.  相似文献   

14.
Radiative transitions in metal clusters are analyzed in terms of quantum transitions of valence electrons that interact with surrounding valence electrons and ion cores. The analysis is based on the solution of the Thomas-Fermi equation for valence electrons in a spherical cluster. The quantum states of valence electrons and the energy and the dipole moments of transitions are determined in the quasiclassical approximation. It is shown that the frequencies of dipole oscillations and the dipole moments of the transitions strongly depend on the size of a cluster.  相似文献   

15.
Classical defects (monopoles, vortices, etc.) are a characteristic consequence of many phase transitions of quantum fields. Most likely these include transitions in the early universe and such defects would be expected to be present in the universe today. We continue our analysis of the onset of classical behavior after a second-order phase transition in quantum field theory and show how defects appear after such transitions.  相似文献   

16.
Quantum phase transitions occur when the ground state of a quantum system undergoes a qualitative change when an external control parameter reaches a critical value. Here, we demonstrate a technique for studying quantum systems undergoing a phase transition by coupling the system to a probe qubit. It uses directly the increased sensibility of the quantum system to perturbations when it is close to a critical point. Using an NMR quantum simulator, we demonstrate this measurement technique for two different types of quantum phase transitions in an Ising spin chain.  相似文献   

17.
We consider theoretically the role of crossed transitions on the interband optical properties of quantum dots. These transitions, which involve one bound state and one delocalized state, are inherent to the joint nature of the valence-to-conduction density of states in quantum dots. We show that they play a crucial role both on the interband absorption and on the broadening of the quantum dot lines.  相似文献   

18.
Charge detection utilizing a highly biased quantum point contact has become the most effective probe for studying few electron quantum dot circuits. Measurements on double and triple quantum dot circuits is performed to clarify a back action role of charge sensing on the confined electrons. The quantum point contact triggers inelastic transitions, which occur quite generally. Under specific device and measurement conditions these transitions manifest themselves as bounded regimes of telegraph noise within a stability diagram. A nonequilibrium transition from artificial atomic to molecular behavior is identified. Consequences for quantum information applications are discussed.  相似文献   

19.
Yan-Wei Dai 《中国物理 B》2022,31(7):70502-070502
We investigate quantum phase transitions for q-state quantum Potts models (q=2,3,4) on a square lattice and for the Ising model on a honeycomb lattice by using the infinite projected entangled-pair state algorithm with a simplified updating scheme. We extend the universal order parameter to a two-dimensional lattice system, which allows us to explore quantum phase transitions with symmetry-broken order for any translation-invariant quantum lattice system of the symmetry group G. The universal order parameter is zero in the symmetric phase, and it ranges from zero to unity in the symmetry-broken phase. The ground-state fidelity per lattice site is computed, and a pinch point is identified on the fidelity surface near the critical point. The results offer another example highlighting the connection between (i) critical points for a quantum many-body system undergoing a quantum phase-transition and (ii) pinch points on a fidelity surface. In addition, we discuss three quantum coherence measures: the quantum Jensen-Shannon divergence, the relative entropy of coherence, and the l1 norm of coherence, which are singular at the critical point, thereby identifying quantum phase transitions.  相似文献   

20.
A theory is presented of quantum criticality in open (coupled to reservoirs) itinerant-electron magnets, with nonequilibrium drive provided by current flow across the system. Both departures from equilibrium at conventional (equilibrium) quantum critical points and the physics of phase transitions induced by the nonequilibrium drive are treated. Nonequilibrium-induced phase transitions are found to have the same leading critical behavior as conventional thermal phase transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号