首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Combining the concepts of supramolecular polymers and dendronized polymers provides the opportunity to create bulky polymers with easy structural modification and tunable properties. In the present work, a novel class of side‐chain supramolecular dendronized polymethacrylates is prepared through the host–guest interaction. The host is a linear polymethacrylate (as the backbone) attached in each repeat unit with a β‐cyclodextrin (β‐CD) moiety, and the guest is constituted with three‐fold branched oligoethylene glycol (OEG)‐based first‐ (G1) and second‐generation (G2) dendrons with an adamantyl group core. The host and guest interaction in aqueous solution leads to the formation of the supramolecular polymers, which is supported with 1H NMR spectroscopy and dynamic light scattering measurements. The supramolecular formation was also examined at different host/guest ratios. The water solubility of hosts and guests increases upon supramolecular formation. The supramolecular polymers show good solubility in water at room temperature, but exhibit thermoresponsive behavior at elevated temperatures. Their thermoresponsiveness is thus investigated with UV/Vis and 1H NMR spectroscopy, and compared with their counterparts formed from individual β‐CD and the OEG dendritic guest. The effect of polymer concentration and molar ratio of host/guest was examined. It is found that the polar interior of the supramolecules contribute significantly to the thermally‐induced phase transitions for the G1 polymer, but this effect is negligible for the G2 polymer. Based on the temperature‐varied proton NMR spectra, it is found that the host–guest complex starts to decompose during the aggregation process upon heating to its dehydration temperature, and this decomposition is enhanced with an increase of solution temperature.  相似文献   

2.
NMR, Raman spectroscopy and ab initio quantum-chemical calculations have been employed to investigate the role of the hydration water in the inverse temperature transition of elastin-derived biopolymers represented by poly(Gly-Val-Gly-Val-Pro) and poly(Ala-Val-Gly-Val-Pro). Temperature and concentration dependences of the Raman spectra measured for water solutions of polymers and of a low-molecular-weight model have been correlated with the vibrational frequencies calculated at the DFT (B3LYP) and MP2 levels for the peptide segment surrounded by a growing number of water molecules. The results indicate strong hydration before the transition that, in addition to water hydrogen-bonded to amide groups, includes hydrophobic hydration of non-polar groups by a dynamic cluster of several water molecules. According to 1H longitudinal and transverse relaxation of HOD signals in D2O solutions, the number of water molecules motionally correlated with the polymer is about 4 per one amino acid residue.  相似文献   

3.
The rhodium-catalyzed, terminal-selective borylation of alkanes has been used to modify polyolefins. The functionalization of two materials, polyethylethylene (PEE) of molecular weights 1200 and 37 000, was conducted by combining bis-pinacoldiboron and 2.5 mol % [Cp*RhCl2]2 in neat polymer and heating at 150 degrees C. This procedure causes the polymer and boron reagent to melt, the catalyst to dissolve, and the reaction to form material with boryl groups at the terminal position of the polymer side chains. Oxidation of the borylated material generated polymers with hydroxyl groups at the terminal position of the side chains. The functionalization was conducted at various ratios of boron reagent to monomer. The resulting borylated and subsequent hydoxylated materials were characterized by 1H and 13C NMR spectroscopy, as well as MALDI-MS and GPC. Little change in polymer molecular weight and polydispersity was observed, and these data indicate that scission of the main chain does not occur. Measurements of the Tg of the polymers showed in increase in Tg of up to 50 degrees C after the modification. Thus, homogeneous, catalytic, selective alkane functionalization can be used to modify polymer properties.  相似文献   

4.
Three different biodegradable polyesters, namely, polycaprolactone (PCL), polybutylene succinate (BIONOLLE), and a copolyester of adipic acid, terephthalic acid, and 1,4‐butanediol (EASTAR) were melt‐blended using a twin‐screw extruder. The percentage composition of each of the aforementioned polymers was varied to obtain different blends, and the mechanical properties were evaluated. Selected blends showed significant improvement in tensile strength as compared with the individual polymers used to prepare the blend. The compatibility between the polymer phases was examined via Fourier transform infrared (FTIR) and nuclear magnetic resonace (NMR) spectroscopy as well as dynamic mechanical analysis. FTIR and NMR data confirmed the occurrence of hydrogen‐bonding and ester‐interchange reactions. Thermal properties and changes in crystallinity of the blends were examined with differential scanning calorimetry and X‐ray diffraction. A considerable increase in crystallinity was shown by the blend system containing BIONOLLE/PCL. The morphology of the blends was observed and correlated to the improved mechanical properties of the blend system. Results revealed an intermediate multiphase system in which a significant degree of mixing was achieved through the chemical interaction of the functional groups present, while using the twin‐screw extruder. Significant improvement in mechanical properties of some blends was observed, and information about the miscibility of these polyesters is provided. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2003–2014, 2002  相似文献   

5.
The cationic polymerization of electron rich monomers such as vinyl ethers, vinyl furane, and cyclopentadiene on silica surfaces can be initiated by aryl methyl halides. The reactions yield always soluble polymers (by heterogeneous catalysis) and novel polymer/silica hybrid materials. The link between polymer and solid is caused by covalent Si-O-C bonds, by network formation of the polymers during the chain growth, or by a combination of both of them. The analysis of the polymer structures on the surface by 1H MAS NMR spectroscopy in suspension and by solid state 13C CP MAS NMR spectroscopy is described. Proof of Si-O-C bonds via DRIFT spectroscopy and 13C CP MAS NMR spectroscopy is given. The most effective method of irreversibly linking the polymer to the silica surface is the network formation. Polyvinyl ethers are bound strongly to the surface, as can be shown by FTIR measurements, but the linkage is not stable due to the Si-O-C bonds' susceptibility to hydrolysis. Poly-cyclopentadienes (PCPD) are linked to the surface by Si-O-C bonds, which show an extraordinary high resistance to acids and bases. Si-O-C bond formation of poly-2-vinyl furane could not yet be detected by 13C CP MAS NMR spectroscopy and DRIFT spectroscopy. In this case the high degree of coating derives from the bifunctionality of 2-vinyl furane: it may undergo Friedel-Crafts-alkylation at the 5-position of the furane ring as well as chain polymerization via the vinyl group at the 2-position.  相似文献   

6.
This article reports on the synthesis of thermosensitive polymer brushes on silica nanoparticles by atom transfer radical polymerization (ATRP) and the study of thermo-induced phase transitions in water. Silica nanoparticles were prepared by the St?ber process and the surface was functionalized by an ATRP initiator. Surface-initiated ATRPs of methoxydi(ethylene glycol) methacrylate (DEGMMA) and methoxytri(ethylene glycol) methacrylate (TEGMMA) were carried out in THF at 40 degrees C in the presence of a free initiator, benzyl 2-bromoisobutyrate. The polymerizations were monitored by 1H NMR spectroscopy and gel permeation chromatography. The hairy hybrid nanoparticles were characterized by thermogravimetric analysis and scanning electron microscopy, and the thermoresponsive properties were investigated by variable temperature 1H NMR spectroscopy and dynamic light scattering. The cloud points of free poly(DEGMMA) and poly(TEGMMA) in water were around 25 and 48 degrees C, respectively. The thermo-induced phase transitions of polymer brushes on silica nanoparticles began at a lower temperature and continued over a broader range (4-10 degrees C) than those of free polymers in water (< 2 degrees C).  相似文献   

7.
We report on the synthesis and characterization of a series of asymmetrically functionalized amphiphilic polymers with alternating pi-donor units (e.g., substituted benzene) and pi-acceptor units (e.g., pyridine) along the polymer backbone. The purpose of our present work involves incorporation of functional groups along the main chain to form intrachain hydrogen bonds, which promote planarization of the polymer backbone, and to fine-tune the optical properties. The structure-property relationship of polymers P1-P6 was investigated by means of analytical methods, such as FTIR spectroscopy, 1H and 13C NMR spectroscopy, UV/Vis spectroscopy, fluorescence spectroscopy, gel permeation chromatography, thermogravimetric analysis, cyclic voltammetry, and X-ray powder diffraction. All polymers were soluble in common organic solvents, and the optical and fluorescence spectra of the polymers showed significant changes according to the formation (P4, P5) or absence (P6) of intramolecular hydrogen bonding along the polymer backbone. Moreover, the 2,6- or 3,5-linkage of the pyridine rings in P5 and P6, respectively, reduced the conjugation along the polymer backbone and this is reflected in their optical properties. The optical properties of the polymers were influenced by the addition of acid (P1-P6), base (P4-P6), and metal ions (e.g., Cu2+, Fe3+, Ag+, Ni2+, Pd2+, Mn2+, Zn2+, Mg2+, and Pr3+). Such polymers could be used in various applications, including sensors and stimuli-responsive displays.  相似文献   

8.
Five bis(dimethylsilyl)-m-carborane-siloxane polymers with methyl, phenyl, and 2-cyanoethyl ligands were characterized by (1)H, (11)B, (13)C, and (29)Si nuclear magnetic resonance (NMR) spectroscopy. All relevant chemical shifts are reported, whereas signal assignment was confirmed by 2D NMR spectroscopy. The chemical composition of the polymers was calculated from the (1)H and (29)Si NMR spectra. Only (29)Si NMR spectroscopy was able to quantify the methoxy end group, from which the average molecular weights were calculated. The copolymer Dexsil 300 turned out to have a regular microstructure, whilst the terpolymers Dexsil 400 and Dexsil 410 have only partly regular sequences. (11)B NMR spectroscopy confirmed the m-carborane structure and revealed some low molecular weight impurities.  相似文献   

9.
Self-complementary monomer 1, which combines a macrotricyclic polyether and two dibenzylammonium ions together, was synthesized, and its self-assembly into supramolecular polymer networks by host-guest interactions was studied. For the purpose of comparative study, two model molecules 2 and 3 were also prepared. It was found that model molecule 2 and dibenzylammonium ion 4 form a 1:2 complex in solution and in the solid state, which afforded a model system for the investigation of the assembly behavior of monomer 1. Consequently, the (1)H NMR spectrum of 1 in CD(3)CN showed characteristic proton signals similar to the model system, which suggested that 1 self-assembles into a supramolecular polymer network. Formation of the supramolecular polymer was further evidenced by the MALDI-TOF MS spectrum, viscometry, and dynamic light-scattering (DLS) experiments. Moreover, it was found that the decomposition and re-formation of the supramolecular polymer could be chemically controlled by the use of triethylamine and trifluoroacetic acid. Interestingly, the supramolecular polymer forms an organogel both in CD(3)CN and in 1:1 (v/v) CDCl(3)/CD(3)CN, and reversible thermo- and pH-induced gel-sol transitions were also found. The presented work will provide a new strategy for the construction of supramolecular polymers with specific structures and properties.  相似文献   

10.
A neutral polyfluorene derivative that contains 20 mol % 2,1,3‐benzothiadiazole (BT) is synthesized by Suzuki cross‐coupling polymerization. A cationic conjugated polymer A and an α‐mannose‐bearing polymer B are subsequently obtained through different post‐polymerization methods. As a result of the charged pendant groups or sugar‐bearing groups attached to the polymer side chains, both A and B show good water‐solubility. The titration of Concanavalin A (Con A) into polymer aqueous solution leads to different fluorescent responses for polymers A and B . Polymer A does not show any obvious fluorescence change upon interaction with Con A, whereas polymer B shows fluorescence increase in BT emission intensity when Con A is added. This is because of the specific interaction between α‐mannose and Con A, which induces polymer aggregation, and then facilitates energy transfer from the phenylene–fluorene segments to the BT units. A practical calibration curve ranging from 1 nM to 250 nM is obtained by correlating the changes in BT emission intensity with Con A concentration. The advantage of polymer B ‐based Con A macromolecular probe is that it shows signal increase upon Con A recognition, which is significantly different from other conjugated polymer‐based fluorescence quenching assays.  相似文献   

11.
A series of mono and di-imide compounds were synthesized by the reaction of common aromatic diamines with 4,5-dichlorophthalic acid in aqueous solution (at temperature between 160 °C and 200 °C) as a precursor to determining the chemical reactivity changes in these diamines during copolyimide synthesis under the same conditions. The reactivities of the second amino group were shown to reduce dramatically, in number of examples, after substitution had occurred on the first amino group. The effect of these reactivity changes on polymer and copolymer properties was examined by the synthesis of a series of polymers containing two of the diamines with very different reactivity behaviours.The model compounds and polymers were characterized by FTIR, 1H NMR and where possible by mass spectroscopy. The polymers were also characterized by GPC, Tg and some mechanical properties.  相似文献   

12.
New water-soluble fluorescent poly(N-vinylpyrrolidone) (PVP) containing carbonylhydrazide recognition units was synthesized by free radical polymerization of N-vinylpyrrolidone in the presence of mercaptoacetic acid as chain transfer agent and then being modified by 1-pyrenebutyric acid hydrazide. FT-IR, 1H NMR, gel permeation chromatography-multi-angle laser light scattering and fluorescence spectroscopy were used to characterize these polymers. Results of fluorescence measurements show that these polymers have a good affinity for deoxyribonucleic acid (DNA). The interactions with PC12 cell results indicated that the polymer with suitable molecular weight could penetrate into PC12 cell and emit fluorescence. This water-soluble polymer with recognition units and high luminescence can be used as a promising fluorescent probe for measurements of biomacromolecules and cells.  相似文献   

13.
Polyfluorene homopolymer ( P1 ) and its carbazole derivatives ( P2 – P4 ) have been prepared with good yield by Suzuki coupling polymerization. P2 is an alternating copolymer based on fluorene and carbazole; P3 is a hyperbranched polymer with carbazole derivative as the core and polyfluorene as the long arms; P4 is a hyperbranched polymer with carbazole derivative as the core and the alternating fluorene and carbazole as the long arms. These polymers show highly thermal stability, and their structures and physical properties are studied using gel permeation chromatography, 1H NMR, 13C NMR, elemental analysis, Fourier transform infrared spectroscopy, thermogravimetry, UV–vis absorption, photoluminescence, and cyclic voltammetry (CV). The influence of the incorporation of carbazole and the hyperbranched structures on the thermal, electrochemical, and electroluminescent properties has been investigated. Both carbazole addition and the hyperbranched structure increase the thermal and photoluminescent stability. The CV shows an increase of the HOMO energy levels for the derivatives, compared with polyfluorene homopolymer ( P1 ). The EL devices fabricated by these polymers exhibit pure blue‐light‐emitting with negligible low‐energy emission bands, indicating that the hyperbranched structure has a strong effect on the PLED characteristics. The results imply that incorporating carbazole into polyfluorene to form a hyperbranched structure is an efficient way to obtain highly stable blue‐light‐emitting conjugated polymers, and it is possible to adjust the property of light‐emitting polymers by the amount of carbazole derivative incorporated into the polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 790–802, 2008  相似文献   

14.
Novel AB2‐type monomers such as 3,5‐bis(4‐methylolphenoxy)benzoic acid ( monomer 1 ), methyl 3,5‐bis(4‐methylolphenoxy) benzoate ( monomer 2 ), and 3,5‐bis(4‐methylolphenoxy)benzoyl chloride ( monomer 3 ) were synthesized. Solution polymerization and melt self‐polycondensation of these monomers yielded hydroxyl‐terminated hyperbranched aromatic poly(ether‐ester)s. The structure of these polymers was established using FTIR and 1H NMR spectroscopy. The molecular weights (Mw) of the polymers were found to vary from 2.0 × 103 to 1.49 × 104 depending on the polymerization techniques and the experimental conditions used. Suitable model compounds that mimic exactly the dendritic, linear, and terminal units present in the hyperbranched polymer were synthesized for the calculation of degree of branching (DB) and the values ranged from 52 to 93%. The thermal stability of the polymers was evaluated by thermogravimetric analysis, which showed no virtual weight loss up to 200 °C. The inherent viscosities of the polymers in DMF ranged from 0.010 to 0.120 dL/g. End‐group modification of the hyperbranched polymer was carried out with phenyl isocyanate, 4‐(decyloxy)benzoic acid and methyl red dye. The end‐capping groups were found to change the thermal properties of the polymers such as Tg. The optical properties of hyperbranched polymer and the dye‐capped hyperbranched polymer were investigated using ultraviolet‐absorption and fluorescence spectroscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5414–5430, 2008  相似文献   

15.
Four generations of dendronized polymers with a methacrylate backbone and hydroxy‐functionalized aliphatic polyester dendrons based on 2,2‐bis(methylol)propionic acid were studied in solutions by rheological measurements, dynamic light scattering, turbidimetry, and 1H NMR self‐diffusion measurements to reveal the effect of increasing hydrophilicity and molecular size on their solution properties. The studied polymers were interesting new amphiphiles with a hydrophobic main chain and a hydrophilic shell. Evidence of aggregation upon the heating of the first‐generation polymer in an aqueous solution was obtained by dynamic light scattering and turbidimetry, reflecting the effect of the hydrophobic polymer backbone, whereas the higher generation polymers did not show aggregation upon heating. Although the dimensions of the polymers were observed to increase with increasing generation, all the polymers exhibited low viscosities and Newtonian flow behavior in both aqueous and dimethyl sulfoxide solutions. The relative viscosities of the polymers in water and dimethyl sulfoxide showed that the conformation of the polymers was somewhat more open in dimethyl sulfoxide, and this led to higher viscosities than those in water, in agreement with the 1H NMR diffusion measurements, by which the dimensions were found to be larger for the polymers dissolved in dimethyl sulfoxide. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3674–3683, 2006  相似文献   

16.
Thermoreversible polymeric biomaterials are finding increased acceptance in tissue engineering applications. One drawback of the polymers is their synthetic nature, which does not allow direct interaction of mammalian cells with the polymers. This limitation may be alleviated by grafting arginine–glycine–aspartic acid (RGD) containing peptides onto the polymer backbone to facilitate interactions with cell‐surface integrins. Toward this goal, N‐isopropylacrylamide (NiPAM)‐based thermoreversible polymers containing amine‐reactive N‐acryloxysuccinimide (NASI) groups were synthesized. Conjugation of RGD‐containing peptides to polymers was demonstrated with 1H NMR spectroscopy and reverse‐phase high‐pressure liquid chromatography. The conjugation reaction was optimal at 4 °C and pH of 8.0, and increased with the increasing NASI content of polymers. With a peptide grafting ratio of 0.25 mol %, there was no significant change in the lower critical solution temperature of the polymers. Finally, the NASI‐containing polymers, cast as films, on tissue culture polystyrene, were shown to conjugate to RGD‐containing peptides and support C2C12 cell attachment. We conclude that NASI‐containing thermoreversible polymers are amenable for grafting biomimetic peptides to impart cell adhesiveness to the polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3989–4000, 2003  相似文献   

17.
A series of liquid crystalline and photoactive polymers were synthesized from biphenylphosphorodichloridate with various 4,4′-bis(m-hydroxyalkyloxy)stilbenes (m = 2, 4, 6, 8, 10) in chloroform by solution polycondensation method using an acid scavenger. The resultant polymers were characterized by inherent viscosity, FT-IR, 1H, 13C and 31P NMR spectroscopies. The liquid crystalline (LC) properties were studied using HOPM and DSC and it was inferred that out of the five polymers synthesized, higher methylene chain containing polymers (m = 6, 8, 10) exhibited LC properties. Thermogravimetric analysis revealed that all the polymers were stable in between 290 and 367 °C and underwent degradation thereafter. The thermal stability and char yield of the polymers decreased with increase in flexible methylene chain. The photochemical properties of these polymers were investigated by UV and fluorescence spectroscopy. Crosslinking proceeds via 2π-2π cycloaddition reaction of the -CHCH- of the stilbene moieties. The rate of crosslinking increases with increase in methylene chain length in the polymer backbone. The fluorescence spectra showed that the longer methylene spacer containing polymers exhibited larger red-shifts than the shorter spacer containing polymers.  相似文献   

18.
Herein we report the synthesis of two solution processible, conjugated polymers containing the benzobisoxazole moiety. The polymers were characterized using (1)H NMR, UV-Vis and fluorescence spectroscopy. Thermal gravimetric analysis shows that the polymers do not exhibit significant weight loss until approximately 300 °C under nitrogen. Cyclic voltammetry shows that the polymers have reversible reduction waves with estimated LUMO levels at -3.02 and -3.10 eV relative to vacuum and optical bandgaps of 2.04-2.17 eV. Devices based on blends of the copolymers and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) exhibited modest power conversion efficiencies. Theoretical models reveal that there is poor electron delocalization along the polymer backbone, leading to poor performance. However, the energy levels of these polymers indicate that the incorporation of benzobisoxazoles into the polymer backbone is a promising strategy for the synthesis of new materials.  相似文献   

19.
The utilization of microwave energy in polymer synthesis is a fast growing field of research leading to a more rapid and cleaner polymerization process. In order to synthesize novel optically active monomer 5‐(4‐methyl‐2‐phthalimidylpentanoylamino)isophthalic acid ( 6 ), the reaction of phthalic anhydride with l ‐leucine was carried out in an acetic acid solution and 4‐methyl‐2‐phthalimidylpentanoic acid as an imide acid was obtained in good yield. Then, it was converted to 4‐methyl‐2‐phthalimidylpentanoyl chloride by treatment with thionyl chloride. This acid chloride was reacted with 5‐aminoisophthalic acid and the novel bulky aromatic amide‐imide chiral monomer 6 was obtained in high yield and was characterized with spectroscopy techniques as well as specific rotation and elemental analysis. Polycondensation of monomer 6 with different diisocyanates such as 4,4′‐methylenebis(phenyl isocyanate), toluene‐2,4‐diisocyanate, isophorone diisocyanate, and hexamethylene diisocyanate was performed by two different methods: microwave irradiation and classical heating polymerization techniques in the presence of various catalysts and without a catalyst. The microwave polymerization technique provides a new way for the production of polymers at high rates. The resulting novel optically active polyamides have inherent viscosities in the range of 0.25–0.63 dl/g. They show good thermal stability and are soluble in amide‐type solvents. The obtained polyamides were characterized by FT‐IR, 1H‐NMR spectroscopy, elemental analyses, specific rotation, and thermal analyses methods. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Nanoassemblies (NAs) with sizes ranging from 60 to 160nm were spontaneously formed in water after mixing a host polymer (polymerized cyclodextrin (pβ-CD)) and a guest polymer (dextran grafted with lauroyl side chains (MD)). The combination of microscopy, dynamic light scattering (DLS), nuclear magnetic resonance ((1)H NMR), isothermal titration calorimetry (ITC) and molecular modelling was used to investigate the parameters which govern the association between MD and pβ-CD. Remarkably, when pβ-CD was progressively added to a solution of MD, NAs with a well-defined diameter were spontaneously formed and their diameter was constant whatever the composition of the system. According to NMR data, almost all the alkyl chains of MD were included into CDs' cavities of the polymer when the molar ratio lauroyl chain (C(12))/CD was ?1. The hydrophobic interaction between C(12) and the hydrophobic cavities of CDs appears as the main driving force for NAs' formation, with a minor contribution arising from van der Waals' interactions. The inclusion of C(12) into β-CD cavities is almost a completely enthalpy-driven process, whereas the MD-C(12)/pβ-CD interaction was found to be an entropy-driven process. Major conclusions which can be drawn from these studies are that the interactions between the two polymers are restricted neither by the MD substitution yield, nor by the micellization of MD. The simultaneous effects of several CD linked together in pβ-CD and of many alkyl chains grafted on dextran were necessary to generate these stable NAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号