首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbes use siderophores to access essential iron resources in the environment. Over 500 siderophores are known, but they utilize a small set of common moieties to bind iron. Azotobacter chroococcum expresses iron‐rich nitrogenases, with which it reduces N2. Though an important agricultural inoculant, the structures of its iron‐binding molecules remain unknown. Here, the “chelome” of A. chroococcum is examined using small molecule discovery and bioinformatics. The bacterium produces vibrioferrin and amphibactins as well as a novel family of siderophores, the crochelins. Detailed characterization shows that the most abundant member, crochelin A, binds iron in a hexadentate fashion using a new iron‐chelating γ‐amino acid. Insights into the biosynthesis of crochelins and the mechanism by which iron may be removed upon import of the holo‐siderophore are presented. This work expands the repertoire of iron‐chelating moieties in microbial siderophores.  相似文献   

2.
The iron complexation of a fluorescent green pyoverdin siderophore produced by the environmental bacterium Pseudomonas putida was characterized by solution thermodynamic methods. Pyoverdin binds iron through three bidentate chelate groups, a catecholate, a hydroxamate, and an alpha-hydroxycarboxylic acid. The deprotonation constants of the free pyoverdin and Fe(III)-pyoverdin complex were determined through a series of potentiometric and spectrophotometric experiments. The ferric complex of pyoverdin forms at very low pH (pH < 2), but full iron coordination does not occur until neutral pH. The calculated pM value of 25.13 is slightly lower than that for pyoverdin PaA (pM = 27), which coordinates iron by a catecholate and two hydroxamate groups. The redox potential of Fe-pyoverdin was found to be very pH sensitive. At high pH (approximately pH 9-11) where pyoverdin coordinates Fe in a hexadentate mode the redox potential is -0.480 V (NHE); however, at neutral pH where full Fe coordination is incomplete, the redox potential is more positive (E(1/2) = -0.395 V). The positive shift in the redox potential and the partial dissociation of the Fe-pyoverdin complex with pH decrease provides a path toward in vivo iron release.  相似文献   

3.
Metal species that are dissolved in water can be transported in the environment, because they can be mobile. Microorganisms can affect metal mobility by excreting organic ligands with high metal affinity. Siderophores are organic ligands with high affinities for Fe3+. They are also able to form complexes with other metals such as actinides. Many countries plan to deposit spent nuclear fuel in deep geological repositories. Microorganisms are present in these subterranean environments and could potentially affect the repository. In this study, the effect of microbial siderophores on the dissolution behavior of two fragments of a spent nuclear fuel pellet was investigated. The commercial hydroxamate siderophore, deferoxamine mesylate (DFAM), and pyoverdin siderophores, isolated from cultures of Pseudomonas fluorescens (CCUG 32456A), were used. DFAM and lyophilized pyoverdins were dissolved in synthetic groundwater to final concentrations of 10 μM and 2.5·10−2 g·L−1, respectively. The fuel pellet fragments were kept in sealed pressure vessels at 10 bars of H2. The pyoverdin solution was first tested, followed by the DFAM solution and the pure synthetic groundwater. Samples were taken on 0, 1, 5, 9 and 14 days after changing the solution in the pressure vessels. The elemental composition of samples was analyzed by means of ICP-MS. The pyoverdin solution maintained significantly higher concentrations of Np and Pu than the pure synthetic groundwater. On the 14th day the concentrations of Np and Pu in the pure synthetic groundwater were 0.01 nM and 0.13 nM, respectively, compared to 0.02 nM and 0.31 nM in the pyoverdin solution. Furthermore, spent nuclear fuel samples were observed to release Ru in the presence of both pyoverdin and DFAM. Hence, it seems that siderophores can form complexes with elements present in spent nuclear fuel.  相似文献   

4.
background: Assimilation of iron is essential for microbial growth. Most microbes synthesize and excrete low molecular weight iron chelators called siderophores to sequester and deliver iron by active transport processes. Specific outer membrane proteins recognize, bind and initiate transport of species-selective ferric siderophore complexes. Organisms most often have specific receptors for multiple types of siderophores, presumably to ensure adequate acquisition of the iron that is essential for their growth. Conjugation of drugs to synthetic hydroxamate or catechol siderophore components can facilitate active iron-transport-mediated drug delivery. While resistance to the siderophore—drug conjugates frequently occurs by selection of mutants deficient in the corresponding siderophore-selective outer membrane receptor, the mutants are less able to survive under iron-deficient conditions and in vivo. We anticipated that synthesis of mixed ligand siderophore—drug conjugates would allow active drug delivery by multiple iron receptor recognition and transport processes, further reducing the likelihood that resistant mutants would be viable.Results: Mixed ligand siderophore-drug conjugates were synthesized by combining hydroxamate and catechol components in a single compound that could chelate iron, and that also contained a covalent linkage to carbacephalosporins, as representative drugs. The new conjugates appear to be assimilated by multiple active iron-transport processes both in wild type microbes and in selected mutants that are deficient in some outer membrane iron-transport receptors.Conclusions: The concept of active iron-transport-mediated drug delivery can now be extended to drug conjugates that can enter the cell through multiple outer membrane receptors. Mutants that are resistant to such conjugates should be severely impaired in iron uptake, and therefore particularly prone to iron starvation.  相似文献   

5.
Azotobacter vinelandii, a nitrogen-fixing soil bacterium, secretes in iron deficiency azotobactin delta, a highly fluorescent pyoverdin-like chromopeptidic hexadentate siderophore. The chromophore, derived from 2,3-diamino-6,7 dihydroxyquinoline, is bound to a peptide chain of 10 amino acids: (L)-Asp-(D)-Ser-(L)-Hse-Gly-(D)-beta-threo-HOAsp-(L)-Ser-(D)-Cit-(L)-Hse-(L)-Hse lactone-(D)-N(delta)-Acetyl, N(delta)-HOOrn. Azotobactin delta has three different iron(III) binding sites which are one hydroxamate group at the C-terminal end of the peptidic chain (N(delta)-Acetyl, N(delta)-HOOrn), one alpha-hydroxycarboxylic function in the middle of the chain (beta-threo-hydroxyaspartic acid), and one catechol group on the chromophore. The coordination properties of its iron(III) and iron(II) complexes were measured by spectrophotometry, potentiometry, and voltammetry after the determination of the acid-base functions of the uncomplexed free siderophore. Strongly negatively charged ferric species were observed at neutral p[H]'s corresponding to a predominant absolute configuration Lambda of the ferric complex in solution as deduced from CD measurements. The presence of an alpha-hydroxycarboxylic chelating group does not decrease the stability of the iron(III) complex when compared to the main trishydroxamate siderophores or to pyoverdins. The value of the redox potential of ferric azotobactin is highly consistent with a reductive step by physiological reductants for the iron release. Formation and dissociation kinetics of the azotobactin delta ferric complex point out that both ends of this long siderophore chain get coordinated to Fe(III) before the middle. The most striking result provided by fluorescence measurements is the lasting quenching of the fluorophore in the course of the protonation of the ferric azotobactin delta complex. Despite the release of the hydroxyacid and of the catechol, the fluorescence remains indeed quenched, when iron(III) is bound only to the hydroxamic acid, suggesting a folded conformation at this stage, around the metal ion, in contrast to the unfolded species observed for other siderophores such as ferrioxamine or pyoverdin PaA.  相似文献   

6.
Capillary electrophoresis (CE) was applied as a fast method of siderophore separation. Siderophores are iron binding and regulating cell products, which facilitate iron transport into cells. A fast and efficient method of siderophore analysis is important for better understanding of the iron pathways in a sea environment or marine organisms. The best results of CE analysis were obtained using free zone CE in 25 mM phosphate buffer at basic pH using a constant voltage of 20 kV. Under these conditions it was possible to detect the presence of siderophores in seawater.  相似文献   

7.
Pathogenic bacteria obtain the iron necessary for survival by releasing an iron chelator, termed a siderophore, and retrieving the iron-siderophore complex via a cell surface siderophore receptor. We have exploited the high affinity of Yersinia enterocolitica for its siderophore, deferoxamine, to develop a rapid method for capture and identification of Yersinia. In this methodology, a deferoxamine-bovine serum albumin conjugate is printed onto a gold-plated chip in a parallel line pattern. After flowing a suspension of Yersinia across the siderophore-derivatized chip, any Yersinia that binds to the chip is detected by dark-field microscopy analysis of the scattered light, followed by Fourier transform analysis of the scattering pattern. Since peak intensities are found to correlate with pathogen concentration, pathogen titers as low as 10(3) cfu/ml can be readily detected. Moreover, immobilized deferoxamine can distinguish Y. enterocolitica, which binds ferrioxamine (deferoxamine-Fe), from Staphylococcus aureus, Mycobacterium smegmatis and Pseudomonas aeruginosa, which don't. Because human pathogens cannot easily mutate their iron retrieval systems without loss of viability, we suggest that few if any mutant Yersinia will emerge that can avoid detection. Together with previous results demonstrating selective capture of Pseudomonas aeruginosa by its immobilized siderophore (pyoverdin), these data suggest that pathogen-specific siderophores may constitute effective and immutable capture ligands for rapid detection and identification of their cognate pathogens.  相似文献   

8.
Interrogation of the evolutionary history underlying the remarkable structures and biological activities of natural products has been complicated by not knowing the functions they have evolved to fulfill. Siderophores-soluble, low molecular weight compounds-have an easily understood and measured function: acquiring iron from the environment. Bacteria engage in a fierce competition to acquire iron, which rewards the production of siderophores that bind iron tightly and cannot be used or pirated by competitors. The structures and biosyntheses of "odd" siderophores can reveal the evolutionary strategy that led to their creation. We report a new Serratia strain that produces serratiochelin and an analog of serratiochelin. A genetic approach located the serratiochelin gene cluster, and targeted mutations in several genes implicated in serratiochelin biosynthesis were generated. Bioinformatic analyses and mutagenesis results demonstrate that genes from two well-known siderophore clusters, the Escherichia coli enterobactin cluster and the Vibrio cholera vibriobactin cluster, were shuffled to produce a new siderophore biosynthetic pathway. These results highlight how modular siderophore gene clusters can be mixed and matched during evolution to generate structural diversity in siderophores.  相似文献   

9.
The yellow compound pyoverdin was isolated from the bacteria Pseudomonas chlororaphis, isolated from mud in Japan. A study of the effects of iron, phosphorus, manganese and zinc on degradation of triphenyltin (TPT) by pyoverdin (20 mg) was carried out in distilled water (30 ml) containing 6 µg l?1 concentration of TPT at 20 °C for 48 or 96 h. The organotins in water were analyzed by gas chromatograph–mass spectrometry in the selected ion mode. The degradation of TPT by pyoverdin decreased with increase of phosphorus at 0–35 mg l?1 and Fe‐EDTA at 0–2 mg l?1 concentrations. Also, degradation of diphenyltin by pyoverdin decreased with increase of Mn‐EDTA at 0–1 mg l?1 and Zn‐EDTA at 0–1 mg l?1. On the other hand, degradation of TPT by pyoverdin was found to be unaffected by manganese and zinc in water. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Some bacteria swarm under some circumstances; they move rapidly and collectively over a surface. In an effort to understand the molecular signals controlling swarming, we isolated two bacterial strains from the same red seaweed, Vibrio alginolyticus B522, a vigorous swarmer, and Shewanella algae B516, which inhibits V. alginolyticus swarming in its vicinity. Plate assays combined with NMR, MS, and X‐ray diffraction analyses identified a small molecule, which was named avaroferrin, as a potent swarming inhibitor. Avaroferrin, a previously unreported cyclic dihydroxamate siderophore, is a chimera of two well‐known siderophores: putrebactin and bisucaberin. The sequenced genome of S. algae revealed avaroferrin’s biosynthetic gene cluster to be a mashup of putrebactin and bisucaberin biosynthetic genes. Avaroferrin blocks swarming through its ability to bind iron in a form that cannot be pirated by V. alginolyticus, thereby securing this essential resource for its producer.  相似文献   

11.
Iron carbonyl‐mediated alkene hydroamidation of 7‐oxabenzonorbornadiene was accomplished under very mild conditions as the result of nucleophilic attack of amines on iron‐coordinating CO to produce exo‐5‐(alkylaminocarbonyl)‐7‐oxabenzobicyclo[2.2.1]hept‐2‐ene derivatives.  相似文献   

12.
The siderophore enterobactin (Ent) is produced by enteric bacteria to mediate iron uptake. Ent scavenges iron and is taken up by the bacteria as the highly stable ferric complex [Fe (III)(Ent)] (3-). This complex is also a specific target of the mammalian innate immune system protein, Siderocalin (Scn), which acts as an antibacterial agent by specifically sequestering siderophores and their ferric complexes during infection. Recent literature suggesting that Scn may also be involved in cellular iron transport has increased the importance of understanding the mechanism of siderophore interception and clearance by Scn; Scn is observed to release iron in acidic endosomes and [Fe (III)(Ent)] (3-) is known to undergo a change from catecholate to salicylate coordination in acidic conditions, which is predicted to be sterically incompatible with the Scn binding pocket (also referred to as the calyx). To investigate the interactions between the ferric Ent complex and Scn at different pH values, two recombinant forms of Scn with mutations in three residues lining the calyx were prepared: Scn-W79A/R81A and Scn-Y106F. Binding studies and crystal structures of the Scn-W79A/R81A:[Fe (III)(Ent)] (3-) and Scn-Y106F:[Fe (III)(Ent)] (3-) complexes confirm that such mutations do not affect the overall conformation of the protein but do weaken significantly its affinity for [Fe (III)(Ent)] (3-). Fluorescence, UV-vis, and EXAFS spectroscopies were used to determine Scn/siderophore dissociation constants and to characterize the coordination mode of iron over a wide pH range, in the presence of both mutant proteins and synthetic salicylate analogues of Ent. While Scn binding hinders salicylate coordination transformation, strong acidification results in the release of iron and degraded siderophore. Iron release may therefore result from a combination of Ent degradation and coordination change.  相似文献   

13.
While six‐coordinate iron(III) porphyrin complexes with pyridine N‐oxides as axial ligands have been studied as they exhibit rare spin‐crossover behavior, studies of five‐coordinate iron(III) porphyrin complexes including neutral axial ligands are rare. A five‐coordinate pyridine N‐oxide–5,10,15,20‐tetraphenylporphyrinate–iron(III) complex, namely (pyridine N‐oxide‐κO)(5,10,15,20‐tetraphenylporphinato‐κ4N,N′,N′′,N′′′)iron(III) hexafluoroantimonate(V) dichloromethane disolvate, [Fe(C44H28N4)(C5H5NO)][SbF6]·2CH2Cl2, was isolated and its crystal structure determined in the space group P. The porphyrin core is moderately saddled and the Fe—O—N bond angle is 122.08 (13)°. The average Fe—N bond length is 2.03 Å and the Fe—ONC5H5 bond length is 1.9500 (14) Å. This complex provides a rare example of a five‐coordinate iron(III) porphyrin complex that is coordinated to a neutral organic ligand through an O‐monodentate binding mode.  相似文献   

14.
New antibiotics are required to treat bacterial infections and counteract the emergence of antibiotic resistance. Pathogen-specific antibiotics have several advantages over broad-spectrum drugs, which include minimal perturbation to the commensal microbiota. We present a strategy for targeting antibiotics to bacterial pathogens that utilises the salmochelin-mediated iron uptake machinery of Gram-negative Escherichia coli. Salmochelins are C-glucosylated derivatives of the siderophore enterobactin. The biosynthesis and utilisation of salmochelins are important for virulence because these siderophores allow pathogens to acquire iron and evade the enterobactin-scavenging host-defense protein lipocalin-2. Inspired by the salmochelins, we report the design and chemoenzymatic preparation of glucosylated enterobactin–β-lactam conjugates that harbour the antibiotics ampicillin (Amp) and amoxicillin (Amx), hereafter GlcEnt–Amp/Amx. The GlcEnt scaffolds are based on mono- and diglucosylated Ent where one catechol moiety is functionalized at the C5 position for antibiotic attachment. We demonstrate that GlcEnt–Amp/Amx provide up to 1000-fold enhanced antimicrobial activity against uropathogenic E. coli relative to the parent β-lactams. Moreover, GlcEnt–Amp/Amx based on a diglucosylated Ent (DGE) platform selectively kill uropathogenic E. coli that express the salmochelin receptor IroN in the presence of non-pathogenic E. coli and other bacterial strains that include the commensal microbe Lactobacillus rhamnosus GG. Moreover, GlcEnt–Amp/Amx evade the host-defense protein lipocalin-2, and exhibit low toxicity to mammalian cells. Our work establishes that siderophore–antibiotic conjugates provide a strategy for targeting virulence, narrowing the activity spectrum of antibiotics in clinical use, and achieving selective delivery of antibacterial cargos to pathogenic bacteria on the basis of siderophore receptor expression.  相似文献   

15.
Electronic transfer protein cytochrome c‐550 from horse heart is studied in the unfolded state by means of paramagnetic 1H NMR. The protein contains 104 aminoacid residues and a heme group with low spin FeIII ion in the oxidized form of protein. The global secondary structure is of the α‐helix type as occurs in the case of very other cytochromes c investigated such as cyt c‐550 from Thiobacillus versutus or cyt c‐551 from Pseudomonas aeruginosa. We have studied the coordination characteristic and electronic properties of heme iron horse heart ferricytochrome c‐550 at increasing denaturing conditions (up to 3.1 M GuHCl and 288‐323 K). The 1H T1 values of the signals were measured and some resonance assignments made based on EXSY experiments. The electronic structure of the iron(III) is discussed on the basis of the temperature dependence of the isotropic shifts and relaxation times. These results show that it is produced a change of spin, from low‐spin iron(III) (2T2, S=1/2) in the folded state to high‐spin iron(III) (6A1, S=5/2) in the unfolded state. It seems to be possible that in the opened structure the ferricyt c‐550 loses one axial ligand (His/‐) appearing the spin transition.  相似文献   

16.
A series of bicyclopyrazolones were synthesized from the condensation reaction of methyl 4‐oxotetrahydro‐2H‐thiopyran‐3‐carboxylate with hydrazine derivatives in ethanol. All synthesized products were characterized by FT‐IR, 1H, and 13C NMR spectral data, elemental analyses, and mass spectrometry. The antibacterial and antifungal activities of these compounds were evaluated against Staphylococcus aureus and Bacillus subtilis as Gram‐positive bacteria, Escherichia coli and Pseudomonas aeruginosa as Gram‐negative bacteria, and the fungus Candida albicans. The results revealed that bicyclopyrazolones including an aryl or aryl sulfonyl group in the N‐2 position of the pyrazolone moiety are the most effective against all the microorganisms studied in this work.  相似文献   

17.
The mixed‐ligand complexes of iron(III) with 1‐cyclopropyl‐6‐fluoro‐4‐oxo‐7‐piperazin‐1‐yl‐1,4‐dihydroquinoline‐3‐carboxylic acid and various neutral bidentate Schiff base ligands were prepared. The structure of mixed‐ligand complexes was investigated using spectral, physicochemical and elemental analyses. Biocidal activity was determined using agar plate technique against Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Salmonella typhi, Escherichia coli and Serratia marcescens . The result showed a significant increase in a biocidal activity compared with parent ligands, metal salts and standard drugs (ofloxacin, levofloxacin). DNA binding and cleavage studies were carried out using absorption titration and gel electrophoresis techniques, respectively. The binding constant of Fe(III) complexes was obtained in the range 2.5–4.0 × 104 M ?1. The DNA binding and cleavage efficacy were raised in mixed‐ligand complexes as compared with parental ligands and metal salts. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
In this work, composite cation‐exchange membrane was prepared by chemical polymerization of pyrrole on the surface of the poly(vinylidene fluoride) (PVDF) membrane using ferric ions. The changes in the surface morphologies of non‐modified and polymer‐modified PVDF membrane were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. The ion‐exchange capacity, water uptake, and fixed group concentration of the composite membrane were investigated. The polypyrrole/PVDF composite membrane was used for the removal of copper (II), chromium (III), iron (III), and aluminum (III) ions from aqueous solution with Donnan dialysis experiments. The flux values (J) and recovery factors (RF) of Cu(II), Cr(III), Fe(III), and Al(III) were obtained. Because of the smaller ion charge and hydration volume, the transport of the Cu(II) ion is higher than that of the other metals. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The fluoroquinolone family member ciprofloxacin is well known for its drug design and coordinating ability towards metal ions. The coordination chemistry of this drug with metal ions of biological and pharmaceutical importance is of considerable interest. Novel Mn(III) mixed‐ligand complexes of ciprofloxacin with various bis‐pyrazolone‐based dinegative bidentate ligands were synthesized and characterized on the basis of their physical properties, magnetic susceptibility measurements, (FT‐IR and electronic) spectral studies. The FAB‐mass spectrum of [Mn(A9)(L)(H2O)2]·H2O [where H2A9 = 4,4′‐(p‐tolylmethylene)bis(3‐methyl‐1‐phenyl‐4,5‐dihydro‐1H‐pyrazol‐5‐ol) and HL = 1‐cyclopropyl‐6‐fluoro‐4‐oxo‐7‐(piperazin‐1‐yl)‐1,4‐dihydroquinoline‐3‐carboxylic acid] was determined. All the synthesized compounds were screened for their bioactivity. The mixed‐ligand complexes exhibited comparable activities against two Gram‐negative (Escherichia coli and Serratia marcescens) and two Gram‐positive (Staphylococcus aureus and Bacillus subtilis) microorganisms. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
《Chemistry & biology》1998,5(11):631-645
Background: Many pathogenic bacteria secrete iron-chelating siderophores as virulence factors in the iron-limiting environments of their vertebrate hosts to compete for ferric iron. Mycobacterium tuberculosis mycobactins are mixed polyketide/nonribosomal peptides that contain a hydroxyaryloxazoline cap and two N-hydroxyamides that together create a high-affinity site for ferric ion. The mycobactin structure is analogous to that of the yersiniabactin and vibriobactin siderophores from the bacteria that cause plague and cholera, respectively.Results: A ten-gene cluster spanning 24 kilobases of the M. tuberculosis genome, designated mbtA-J, contains the core components necessary for mycobactin biogenesis. The gene products MbtB, MbtE and MbtF are proposed to be peptide synthetases, MbtC and MbtD polyketide synthases, Mbtl an isochorismate synthase that provides a salicylate activated by MbtA, and MbtG a required hydroxylase. An aryl carrier protein (ArCP) domain is encoded in mbtB, and is probably the site of siderophore chain initiation. Overproduction and purification of the mbtB ArCP domain and MbtA in Escherichia coli allowed validation of the mycobactin initiation hypothesis, as sequential action of PptT (a phosphopantetheinyl transferase) and MbtA (a salicyl-AMP ligase) resulted in the mbtB ArCP domain being activated as salicyl-S-ArCP.Conclusions: Mycobactins are produced in M. tuberculosis using a polyketide synthase/nonribosomal peptide synthetase strategy. The mycobactin gene cluster has organizational homologies to the yersiniabactin and enterobactin synthetase genes. Enzymatic targets for inhibitor design and therapeutic intervention are suggested by the similar ferric-ion ligation strategies used in the siderophores from Mycobacteria, Yersinia and E. coli pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号