首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present paper, the elemental composition of wood ashes obtained by the combustion of wood in a fireplace was determined with the use of ICP-MS and ICP-OES techniques. Wood ashes may find a potential application as deacidifying agents and soil conditioners, since they contain calcium (in the form of CaCO3 and CaO), potassium (in the form of K2SO4 and K2CO3) and significant levels of micronutrients. However, if applied to soil, it is important to assess the bioavailability of particular elements to plants. This process can be simulated by proper extraction procedures.

Various species of wood were combusted in a firestove in a single-family house. The ashes underwent multielemental analyses with ICP-MS Varian Ultra Mass 700 (Australia) and ICP-OES Vista-MPX from Varian (Australia) in order to determine the content of macro- and micronutrients as well as toxic elements. Ashes were also extracted with solutions of 0.1 M NaNO3 and water in order to simulate the process of elemental transfer from ash (used as soil conditioner) to soil solution and consequently to plants. Also, the environmental impact of ash supplementation to soil was assessed in these experiments. Soil was supplemented with 0–20% of ash. After elution, the eluent underwent multielemental analysis by ICP-MS and ICP-OES techniques to determine the content of macronutrients (P, K, Mg), micronutrients (Fe, Mn, Co, Mo, Zn, Cu and Ti) and toxic elements (Hg, Pb, As and Cd).

It was shown that fireplace ashes can be applied for deacidification of homestead gardens. Ash may be described as a valuable soil conditioner with N:P:K formula 0:1:3. It is concluded therefore that in order to achieve full fertilization, additional supplementation with nitrogen fertilizer would be necessary.  相似文献   


2.
A new method for separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid-phase extraction (SPE) with Bismuthiol-II-immobilized magnetic nanoparticles and their determination by ICP-OES has been developed. The separation of the target analytes from the aqueous solution containing the target analytes and Bismuthiol-II-immobilized magnetic nanoparticles was simply achieved by applying external magnetic field. Optimal experimental conditions including pH, sample volume, eluent concentration and volume and co-existing ions have been studied and established. Under the optimal experimental conditions, the detection limits for Cr, Cu and Pb with enrichment factors of 96, 95 and 87 were found to be 0.043, 0.058 and 0.085 ng mL−1 and their relative standard deviations (R.S.D.s) were 3.5%, 4.6% and 3.7% (n = 5, C = 2 ng mL−1), respectively. The method was validated with certified reference material (GBW50009-88) of environmental water sample and the analytical results coincided well with the certified values. Furthermore, the method was successfully applied to the determination of target analytes in river and lake water samples. Compared with established methods, the proposed method is characterized with high enrichment factor, fast separation and low detection limits.  相似文献   

3.
通过对比电感耦合等离子体原子发射光谱法(ICP-OES)与石墨炉原子吸收光谱法(AAS)测定水中重金属的检出限、重复性、加标回收率等实验,验证两种方法的准确性,从而为饮用水中重金属的测定提供可靠的方法。结果表明,石墨炉原子吸收光谱法测定饮用水中砷、镉、铬、铅、汞、硒的检出限均低于ICP-OES法,但ICP-OES法测定线性范围宽,重复性和加标回收率均优于石墨炉原子吸收光谱法,分析速度快,操作便捷,结果满意,是目前饮用水中重金属测定非常可靠的方法。  相似文献   

4.
提出了使用ICP-OES同时测定活性炭中Al、Co、Cr、Cu、Fe、Mg、Mn、Na、P和S的分析方法。采用高氯酸和硝酸处理样品,以硝酸作为测定介质,在选定的仪器工作条件下直接测定。各元素的测定检出限为0.002~0.012μg/mL,相对标准偏差(RSD,n=6)为0.32%~1.83%。对样品进行加标回收试验,回收率在92.1%~108.4%之间。实验表明:方法不仅具有较高的灵敏度和较低的检出限,而且快速、准确,能够满足活性炭和以活性炭为载体的催化剂杂质元素分析的要求。  相似文献   

5.
A method for the preconcentration and speciation of chromium was developed. On-line preconcentration and determination were obtained using inductively coupled plasma optical emission spectrometry (ICP-OES) coupled with flow injection. To determinate the chromium (III) present in parenteral solutions, chromium was retained on activated carbon at pH 5.0. On the other hand, a step of reduction was necessary in order to determine total chromium content. The Cr(VI) concentration was then determined by difference between the total chromium concentration and that of Cr(III). A sensitivity enrichment factor of 70-fold was obtained with respect to the chromium determination by ICP-OES without preconcentration. The detection limit for the preconcentration of 25 ml of sample was 29 ng l−1. The precision for the 10 replicate determinations at the 5 μg l−1 Cr level was 2.3% relative standard deviation, calculated with the peak heights. The calibration graph using the preconcentration method for chromium species was linear with a correlation coefficient of 0.9995 at levels near the detection limits up to at least 60 μg l−1. The method can be applied to the determination and speciation of chromium in parenteral solutions.  相似文献   

6.
Certain wear metals (Fe, Cr, Ni, Cu and Zn) of various lubrication oils were determined by means of ICP-OES and FAAS. The kerosene dilution method, which is used widely together with ICP-OES, was applied with both methods here. Calibration standards were made from a commercial organo-metallic standard. Our aim was to clarify the possibility of using the quick kerosene dilution method together with FAAS for a rapid check for certain indicator metals. Metal determinations with FAAS were accurate enough for quantitative work in machine condition diagnostics and waste oil characterization, when compared with those with ICP-OES.  相似文献   

7.
A novel adsorbent of thiacalix[4]arene tetracarboxylate derivative modified mesoporous TiO2 was prepared and was used as a packing material for flow injection (FI) micro-column (20 mm × 4.0 mm i.d.) separation/preconcentration on-line coupled to inductively coupled plasma optical emission spectrometry (ICP-OES) simultaneous determination of trace metals (V, Cu, Pb, Cr) in environmental water samples. The experimental conditions for modified mesoporous TiO2 packed micro-column separation/preconcentration of the target metals were optimized and the interference of commonly coexisting ions was examined. The adsorption capacities of thiacalix[4]arene tetracarboxylate derivative modified mesoporous TiO2 for V, Cu, Pb and Cr were found to be 14.0, 11.7, 17.7 and 14.5 mg g− 1, respectively. The detection limits of the method were 0.09, 0.23, 0.50 and 0.15 µg L− 1 for V, Cu, Pb and Cr, respectively, with a preconcentration factor of 20. The precision of this method were 1.7% (V), 3.9% (Cu), 4.6% (Pb) and 2.9% (Cr) (n = 7, C = 5 µg L− 1), respectively. The developed method was applied to the determination of trace heavy metals in real samples and the recoveries for spiked samples were found to be in the range of 88.7-107.1%. For validation, a certified reference material of GSBZ50009-88 environmental water sample was analyzed and the determined values were in good agreement with the certified values.  相似文献   

8.
The comparison between inductively coupled plasma optical emission spectrometry (ICP-OES) and total reflection X-ray fluorescence spectrometry (TXRF) for simultaneous determination of metal content (Cr, Cu, Fe, Mn, Pb and Zn) in mosses from the Metropolitan Area of the Toluca Valley was performed. Epiphytic mosses (Fabriona ciliaris and Leskea angustata) were collected in two sampling campaigns and were digested with HNO3, HCl and HF for ICP-OES method and HNO3 and HCl for TXRF method. The certified reference material (IAEA-336, Lichen) and the Standard Reference Material (SRM-1573, tomato leaves) were used for the quality control and to evaluate trueness and precision. Linearity, detection and quantification limits were also determined. Results show an ICP-OES and TXRF trueness mean of 101 ± 5% and 97 ± 9%, respectively; the relative standard deviation (RSD percent) was less than 17% in both methods. The moss samples exhibit a satisfactory precision (RSD ≤ 20%), because the RSD percent for ICP-OES, from 2% to 15%, and that for TXRF, from 1% to 17%, were obtained. One factor experimental design and simple regression analysis (α = 0.05) were used to compare the ICP-OES and TXRF metal concentrations. The statistical results do not show significantly different values for Cu, Mn, Pb and Zn in both the sample campaigns. In addition, the average results for Cr in the first sample campaign (30.3 ± 11.4 mg/kg for ICP-OES and 18.6 ± 9.8 mg/kg for TXRF) and Fe values in the second sample campaign (10,810 ± 2980 mg/kg for ICP-OES and 8380 ± 2350 mg/kg for TXRF) were significantly different in both methods. These differences are attributed to an incomplete sample digestion in the TXRF sample preparation. The results of the simple regression analyses show p-value less than 0.05, which indicates an equivalent and significant relation between ICP-OES and TXRF.  相似文献   

9.
The objective of this research was to determine the differences between farmed and wild rainbow trout in terms of heavy metal and trace element accumulation in edible tissues. The samples were analyzed for As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, Sr and Zn by inductively coupled plasma-optical emission spectrometry (ICP-OES); and for Hg by cold vapor atomic absorption spectrometry (CVAAS). The results were expressed as μg/g of dry weight. With the exception of Ba and Sr, liver had significantly higher heavy metal and trace element concentrations compared to the muscle in farmed or wild fish. Higher levels of Ba, Cr, Fe, Mn and Zn, as well as lower levels of Cu and Sr were found in tissues of wild rainbow trout compared to its farmed relative. Levels of Cd in 41.6% of farmed fish samples and 45.8% of wild fish samples exceeded the European Commission regulation. Regarding the Pb, concentrations in 50% of farmed fish samples and 62.5% of wild ones were above the European Commission limit. However, levels of Hg and As in all of the examined samples were lower than the legislated limits. The differences in heavy metal and trace element accumulation observed between farmed and wild fish were probably related to the differences in their environmental conditions and dietary element concentrations.  相似文献   

10.
Laser-induced breakdown spectroscopy (LIBS) is used for the investigation of wood preservers in timber and in furniture. Both experiments in laboratory and practical applications in recycling facilities and on a building site prove the new possibilities for the fast detection of harmful agents in wood. A commercial system was developed for mobile laser-plasma-analysis as well as for industrial use in sorting plants. The universal measuring principle in combination with an Echelle optics permits real simultaneous multi-element-analysis in the range of 200–780 nm with a resolution of a few picometers. It enables the user to detect main and trace elements in wood within a few seconds, nearly independent of the matrix, knowing that different kinds of wood show an equal elemental composition. Sample preparation is not required. The quantitative analysis of inorganic wood preservers (containing, e.g. Cu, Cr, B, As, Pb, Hg) has been performed exactly using carbon as reference element. It can be shown that the detection limits for heavy metals in wood are in the ppm-range. Additional information is given concerning the quantitative analysis. Statistical data, e.g. the standard deviation (S.D.), were determined and calibration curves were used for each particular element. A comparison between ICP-AES and LIBS is given using depth profile correction factors regarding the different penetration depths with respect to the different volumes in wood analyzed by both analytical methods.  相似文献   

11.
A new method is proposed using a microcolumn (20 mm × 2.0 mm) packed with nanometer-sized zirconia as solid-phase extractor for the separation/preconcentration of Mn, Cu, Cr, Zn, Ni and Co prior to their determination by inductively coupled plasma optical emission spectrometer (ICP-OES) in environmental samples. The factors affecting the separation and preconcentration of analytes such as pH, sample flow rate and volume, eluent concentration and volume were determined, interfering ions were studied, and the optimal experimental conditions were established. The adsorption capacity of nanometer-sized ZrO2 for Mn, Cu, Cr, Zn, Ni and Co was found to be 1.3, 1.3, 1.7, 2.0, 3.9 and 1.5 mg g−1, respectively. The detection limits of the method were 12, 58, 24, 2, 7 and 36 ng L−1, respectively, with a preconcentration factor of 25. The precision of this method was 1.7% (Mn), 2.9% (Cu), 5.9% (Mn), 3.8% (Mn), 6.2% (Mn) and 4.3% (Mn) with 9 determinations of 10 ng mL−1 of target analytes, respectively. The method was successfully applied to the determination of trace metals in lake water, dried fish samples, certified reference materials of human hair and milk, and provided satisfactory results.  相似文献   

12.
A novel adsorbent of multi-wall carbon nanotubes (MWCNTs) chemically modified silica (MWCNTs-silica) was synthesised and employed as the adsorbent material for solid-phase extraction (SPE) of trace Zn(II), Cu(II), Cd(II), Cr(III), V(V) and As(V) in environmental water samples followed by inductively coupled plasma optical emission spectrometry detection. This material inherits the advantages of nanomaterial MWCNTs and conventional silica with dual functional groups (–NH2 and –COOH), and avoid the problem of nanomaterial in SPE, such as high pressure. The factors affecting the separation and preconcentration of target elements such as pH, sample flow rate and volume, eluent concentration and volume were investigated. Under the optimised conditions, the detection limits for Zn(II), Cu(II), Cd(II), Cr(III), V(V) and As(V) were 0.27, 0.11, 0.45, 0.91, 0.55 and 0.67 μg L?1 with the relative standard deviations of 3.1, 5.9, 4.1, 4.0, 7.3 and 8.6% (c = 10 μg L?1, n = 7), respectively. The adsorption capacity of MWCNTs-silica was 26.6, 70.0, 13.8, 58.0, 20.0 and 20.0 mg g?1 for Zn(II), Cu(II), Cd(II), Cr(III), V(V) and As(V), respectively, and the prepared adsorbent could be reused more than 100 times. In order to validate the developed method, two certified reference materials of GSBZ50009-88 and GSBZ 50029-94 environmental waters were analysed and the determined values were in good agreement with the certified values. The developed method has been applied to the determination of trace elements in environmental water samples with satisfactory results.  相似文献   

13.
This paper describes our research on the synthesis of the sorbent with chemically bonded ketoimine groups, and, furthermore, using this sorbent in the SPE technique to extract and preconcentrate trace amounts of metal ions in water samples. Surface characteristics of the sorbent were determined by elemental analysis, NMR spectra for the solid phases (29Si CP MAS NMR), and analysis of pore size distribution of the sorbent and nitrogen adsorption-desorption. The newly proposed sorbent with ketoimine groups was applied for the extraction and preconcentration of trace amounts of Cu (II), Cr (III) and Zn (II) ions from the water from a lake, post-industrial water and purified water unburdened back to the lake. The determination of the transition-metal ions was performed on an emission spectroscope with inductively coupled plasma ICP-OES. For the batch method, the optimum pH range for Cu (II) and Cr (III) extraction was equal to 5, and Zn(II)–to 8. All the metal ions can be desorbed from SPE columns with 10?mL of 0.5?mol?HNO3. The detection limits of the method were found to be 0.7?µg?L?1 for Cu (II), 0.08?µg?L?1 for Cr (III), and 0.2?µg?L?1 for Zn (II), respectively.  相似文献   

14.
通过对比电感耦合等离子体发射光谱法(ICP-OES)与石墨炉原子吸收法(AAS)测定水中重金属的检出限、重复性、加标回收率等实验,验证两种方法的准确性,从而为饮用水中重金属的测定提供可靠的方法。结果表明,石墨炉原子吸收法测定饮用水中砷、镉、铬、铅、汞、硒检出限均低于ICP-OES法,但ICP-OES法测定线性范围宽,重复性和加标回收率均优于石墨炉原子吸收法,分析速度快,操作便捷,结果满意,是目前饮用水中重金属的测定非常可靠的方法。  相似文献   

15.
Seven synthetic graphite powders of different grade of purity were analyzed by means of INAA, WDXRF, EDXRF, DC-OES directly and using ICP-MS, ICP-OES, ETAAS and FAAS in combination with various sample preparation techniques. On the basis of a statistical evaluation of the results obtained, for the trace elements Al, Ca, Cr, Cu, Fe, Mn and Ni, reference values were established and, for the elements As, Co, Mg, Mo, Pb, Sb, Si, Sr, Ti, V, Zn and Zr, informative values are given. The analyzed reference materials are commercially available.  相似文献   

16.
 Seven synthetic graphite powders of different grade of purity were analyzed by means of INAA, WDXRF, EDXRF, DC-OES directly and using ICP-MS, ICP-OES, ETAAS and FAAS in combination with various sample preparation techniques. On the basis of a statistical evaluation of the results obtained, for the trace elements Al, Ca, Cr, Cu, Fe, Mn and Ni, reference values were established and, for the elements As, Co, Mg, Mo, Pb, Sb, Si, Sr, Ti, V, Zn and Zr, informative values are given. The analyzed reference materials are commercially available. Received: 12 February 1996/Revised:27 March 1996/Accepted:2 April 1996  相似文献   

17.
The selection of the most suitable dilution methods for determination of trace elements in human serum using inductively coupled plasma mass spectrometry is reported. The trace elements were Al, V, Cr, Fe, Mn, Co, Cu, Zn, As, Cd, Sn, Tl, and Pb. The performance of various dilution methods was assessed by precision, linearity, detection limits, quantification limits, fortified recoveries, and the analysis of reference materials. The results demonstrate that diluted solution containing only nitric acid is most suitable for As, Cr, Mn, and Co in serum. Dilute solutions containing nitric acid and Triton X-100 were most appropriate for Cu, Zn, Cd, and Tl. The optimum conditions for Al, V, Mn, Fe, Cr, Co, Sn, and Pb used tetra-n-butylammonium hydroxide, Triton X-100, and ethylenediamine tetraacetic acid.  相似文献   

18.
A total of 117 honeysuckle (Lonicera japonica Thunb.) samples from four major regions of production in China, including Fengqiu in Henan, Pingyi in Shandong, Julu in Hebei, and Xiushan in Chongqing, were analyzed to determine their geographical origin. δ13C, δ15N, and δ18O values were determined by isotope ratio mass spectrometry (IRMS), and the contents of 18 elements (Fe, Mn, Cu, Zn, K, Ca, Mg, Pb, Cd, Cr, As, Hg, Se, Sr, Ni, Co, B, and Mo) were measured by inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). Multivariate statistical analysis by analysis of variance (ANOVA), principal component analysis (PCA), and linear discriminant analysis (LDA) were performed. The results showed that there were very significant differences in the stable isotope ratios and elemental concentrations in honeysuckle based on geographical origin, with plants from each region having a unique fingerprint. Discriminant functions were established to distinguish the origin of honeysuckle using suitable indicators including Cd, Cr, As, Hg, Se, Co, Ni, Sr, Fe, δ13C, δ15N, and δ18O. Cross-validated cases of 95.7% were correctly classified.  相似文献   

19.
A new method using diluted reagents (nitric and hydrochloric acids and oxygen peroxide) and ultrasound energy to assist metals acid leaching with from edible seaweed was optimized. The method uses a first sonication at high temperature with hydrochloric acid as a previous stage to an ultrasound-assisted acid leaching with 7 ml of an acid solution containing nitric acid, hydrochloric acid and hydrogen peroxide at concentrations of 3.7, 3.0 and 3.0 M, respectively. Optimum conditions for the first sonication step were ultrasound energy at 17 kHz, sonication temperature at 65 °C, an acid volume of 2 ml, an hydrochloric acid concentration of 6.0 M and a sonication time of 10 min. It has been found that the first sonication stage at high temperature with hydrochloric acid is necessary to obtain quantitative recoveries for As, Ba, Fe and V. Otherwise quantitative recoveries were reached for the other elements investigated (Ca, K, Na, Mg, Cd, Cr, Cu, Mn, Ni, Pb and Zn). The repeatability of the ultrasound-assisted acid leaching method was around 10% for all elements. Adequate limit of detection and limit of quantification were reached by using inductively coupled plasma-optical emission spectrometry (ICP-OES) for measurements. The method resulted accurate after analysing several seaweed certified reference materials (IAEA-140/TM, NIES-03 and NIES-09). The method was finally applied to the multi-element determination in edible seaweed samples.  相似文献   

20.
以硝酸和过氧化氢混合溶液为消解溶剂,利用微波消解法制备鲢鱼肌肉样品溶液,再应用全谱直读电感耦合等离子体发射光谱测定技术(ICP-OES),对鲢鱼肌肉中所含的矿物元素进行较为全面的定性定量分析。定性结果显示,鲢鱼肌肉中含有19种矿物元素,分别是K,Ti,Al,Ga,B,Ba,Ca,Cd,Cr,Cu,Fe,Mg,Mn,Na,P,Pb,S,Sr,Zn等。定量结果显示,ICP-OES定量分析线性范围宽,可达2个数量级以上;工作曲线线性相关系数在0.999以上;样品测定RSD值在0.44 % ~ 11.83 %之间,大部分在5%以内;除了一个元素以外,回收率测定结果都在(100±10)%以内;测定结果可为相关应用研究提供参考数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号