首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cesium-selective electrodes were prepared from a synthetic zeolite molecular sieve of the mordenite type. The membrane was made from zeolite crystals embedded in an epoxy resin. The response towards cesium ions -was linear from about 3 × 10-5 to at least 0.1 mol l-1, with almost Nernstian slope. The usable pH range was 3.5–9 for 0.01 mol l-1 cesium solutions. The selectivity order was Cs > Ag, K > Na > Li for univalent ions. The response for divalent ions was not Nernstian, Cs > Ba > Ca > Cu. About two weeks after the hydration, there was a degradation of electrode performance indicated by increased detection limit and decreased slope.  相似文献   

2.
The sorption of radium, barium and mixture of both elements has been studied in the zeolites 3A, 5A and Y. The ratio zeolite; solution was 100 mg: 10 cm3 and the pH was 3. Carrier-free radium was completely retained in all studied zeolites. When 0.0016 meq of barium/cm3 were added, the sorption of radium decreased in the zeolite 5A only and when 0.014 meq of barium/cm3, the radium sorption was reduced in all the studied zeolites. The sorption of barium was similar to that of radium. The amounts of sodium and calcium removed from the zeolites and the proton quantity fixed to them allowed us propose the ion exchange mechaniosm. The changes and ionic radii of the species exchanged did not play an important role. However, the location of the ions in the crystalline network of each zeolite is probably an important parameter for the exchange.  相似文献   

3.
A wide variety of characterization methods, including UV-vis spectroscopy of adsorbed I2, microcalorimetry of CO2 adsorption, and x-ray absorption spectroscopy at the Cs LIII edge of zeolite cations, was applied to a series of alkali containing zeolites in order to elucidate the nature of the basic sites on these materials. In addition, three catalytic reactions involving basic zeolites were studied. In the first case, alkali-exchanged zeolites (L, Beta, X and Y) were used as catalysts for the side-chain alkylation of toluene with methanol to form styrene and ethylbenzene. Zeolites with low base site densities and appropriate base strengths catalyzed toluene alkylation without decomposing methanol to carbon monoxide. In the second example, ruthenium metal clusters were supported on alkali and alkaline earth exchanged X zeolites and tested as catalysts for ammonia synthesis. Zeolites containing alkaline earth ions exhibited rates greater than those containing alkali ions. Finally, zeolite X loaded with alkali metal was an active catalyst for toluene alkylation with ethylene whereas zeolite X loaded with alkali oxide was inactive for the reaction. These results suggest that exciting opportunities exist for the use of basic zeolites as catalysts and catalyst supports.  相似文献   

4.
The ion exchange between60Co2+ ions contained in residual radioactive water and zeolites of the NaA, NaX and CaA types was studied. The more advanced retaining of60Co2+ ions occurs for the NaA zeolite with the higher exchange capacity, as compared to NaX. With the CaA zeolite, a very weak ion exchange with60Co2+ ions was observed.  相似文献   

5.
Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag+, Zn2+, and Cu2+ ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag+ ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag+, Zn2+, and Cu2+ ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.  相似文献   

6.
The use of silver ion exchanged zeolites for the sampling and subsequent analysis of tributyl phosphate (TBP) by laser desorption-mass spectrometry is presented. This technique, which should be generally applicable to any organic molecule that undergoes facile reaction with metal cations, uses silver counter ions in the zeolites as chemical ionization reagent ions to form metal cationized pseudomolecular ions of the molecule sorbed by the zeolite. Resonant laser ablation was used to selectively generate Ag+ from the zeolite sample to reduce the number of unwanted ions injected into the ion trap, although conventional desorption ionization can be used to create metal cations. The experiment is simple to implement, and provides a strong ion signal for the Ag(TBP)+ adduct species. Mass spectrometry/mass spectrometry provides data necessary for compound identification. Adsorption of TBP based upon zeolite pore size was modeled for two zeolite structures and their ability to accept TBP into their pore volumes; these computational results are strongly supported by the experimental data presented here.  相似文献   

7.
In the present study, non-conventional solid acid catalysts such as NaY, metal ion exchanged zeolite NaY (Zn2+, Fe3+, Ce3+, La3+ and Nd3+), H-mordenite, H-β and HZSM-5 were used in order to overcome the disadvantages of conventional Friedel-Crafts catalysts for the acylation of anisole with acetic anhydride. Among the various zeolites studied, the HY zeolite shows an intermediate activity. Zeolite containing transition metal ions (Zn2+ and Fe3+) are less active and zeolite NaY is nearly inactive. The catalysts exhibit the activity in the order H-β>transition metal ions (Zn2+ and Fe3+)>HY>NaY zeolite. The highest catalytic activity of H-β could be due to its larger pore size. The type of acidity and the acid strength in zeolite Y were determined by FTIR and differential scanning calorimetric (DSC) studies on the pyridine adsorbed catalysts. The correlation of catalytic activity with acidity reveals that Brönsted acid sites in zeolite promote the acylation of anisole.  相似文献   

8.
Titanium-incorporated ZSM-5 zeolites (Si/Al = 50–200 and Si/Ti = 70) were successfully synthesized in a one-step sol-gel process under microwave irradiation. The characteristics of Ti-ZSM-5 zeolites were investigated using X-ray power diffraction, UV/Vis-DRS, FT-IR spectroscopy and solid-state 27Al-NMR to monitor the physico-chemical properties. Simultaneously, the acidic properties were characterized by the NH3-TPD profile. The characterization results revealed that the Ti4+ and Al3+ ions were well incorporated into the framework of Ti-ZSM-5 zeolite. The prepared zeolite was moderately active but selective in the dehydration of methanol to dimethyl ether.  相似文献   

9.
Nanometer‐sized zeolite A with a large cesium (Cs) uptake capability is prepared through a simple post‐milling recrystallization method. This method is suitable for producing nanometer‐sized zeolite in large scale, as additional organic compounds are not needed to control zeolite nucleation and crystal growth. Herein, we perform a quartz crystal microbalance (QCM) study to evaluate the uptake ability of Cs ions by zeolite, to the best of our knowledge, for the first time. In comparison to micrometer‐sized zeolite A, nanometer‐sized zeolite A can rapidly accommodate a larger amount of Cs ions into the zeolite crystal structure, owing to its high external surface area. Nanometer‐sized zeolite is a promising candidate for the removal of radioactive Cs ions from polluted water. Our QCM study on Cs adsorption uptake behavior provides the information of adsorption kinetics (e.g., adsorption amounts and rates). This technique is applicable to other zeolites, which will be highly valuable for further consideration of radioactive Cs removal in the future.  相似文献   

10.
The Fe(III) uptake from aqueous solutions by natural and chemically modified zeolites was investigated using a gradual radioexchange method and AAS technique. The leachability of Fe(III) from loaded zeolites was studied too. The Fe-uptake reached the value of 60 mg·g−1 for the zeolite chemically treated with 6 mol·l−1 solution of NaOH and it is more than twelve times higher than that of the raw zeolite. The leachability of the loaded zeolite samples in water and alkaline solution was up 5%. The leachability of the same zeolites in acid solution depended on the concentration of modifying solution. The leachability at pH=2.6 in the range 2–20% at pH=1.9 was many times higher. The results of the radioexchange and AAS methods were compared.  相似文献   

11.
Different modifications of the zeolites Na+‐Beta and LTA were applied for improving the working characteristics of a urea biosensor. The bioselective membrane of the biosensor was based on urease and different zeolites co‐immobilized with bovine serum albumin on the surface of a pH‐FET. It was shown that the biosensors modified with the zeolites H+‐Beta30 and H+‐Beta50 are characterized by increased sensitivity to urea. The influence of the zeolite concentration on the sensitivity of the biosensors was studied. The optimal concentration of the zeolites H+‐Beta30 and H+‐Beta50 in the bioselective membrane was 15 %. Different variants of co‐immobilization of urease and zeolite H+‐Beta30 were studied and the optimal method was selected. Thus, a general conclusion is that the urea biosensor sensitivity can be improved using zeolite H+‐Beta30 for urease immobilization in the bioselective membrane.  相似文献   

12.
Here we report a quantitative comparison of sector field inductively coupled plasma mass spectrometry (ICP-SFMS) and collision/reaction cell inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) for the detection of 90Sr, 137Cs, and 226Ra at ultra-trace levels. We observed that the identification and quantification of radioisotopes by ICP-MS were hampered by spectral (both isobaric and polyatomic ions) and non-spectral (matrix effect) interferences. ICP-QMS has been used to eliminate the isobaric 90Sr/90Zr interference through the addition of O2 into the collision cell as a reactant gas. Zr+ ions were subsequently converted into ZrO+, whereas Sr+ ions were not reactive. In addition, the isobaric interference of 137Ba on 137Cs was eliminated by the addition of N2O gas in the cell, which led to the formation of BaO+ and BaOH+ products, whereas Cs+ remained unreactive. Furthermore, He and H2 were used in the collision/reaction cell to eliminate polyatomic ions formed at m/z 226. A comparison of the results obtained by ICP-SFMS after a chemical separation of Sr from Zr and Cs from Ba was performed. Finally, to validate the developed analytical procedures, measurements of the same samples were performed by γ-ray spectroscopy.  相似文献   

13.
Zeolite samples of Tertiary age obtained from different areas of Anatolia (Turkey) are classified as Clinoptilolite, Analcime or Heulandite and we have investigated their sorption capacity for Cs+ and Sr2+ ions from aqueous solutions. Quantitative analysis of the zeolite samples untreated and treated with chloride salts of Cs+ or Sr2+ in aqueous solutions, for Na, Mg, Al, Si, P, K, Ca, Ti, Mn and Fe were performed using EDXRF. Chemical analysis indicated that the Clinoptilolite type zeolite from the deposits of Cankiri-Corum Basin of Anatolia is the best sorber for Sr and Cs ions.Presented at the Sixth International Seminar on Inclusion Compounds, Istanbul, Turkey, 27–31 August, 1995.  相似文献   

14.
In the presence of sufficient concentrations of water, stable, hydrated hydronium ions are formed in the pores and at the surface of solid acids such as zeolites. For a medium‐pore zeolite, such as zeolite MFI, hydrated hydronium ions consist of eight water molecules and have an effective volume of 0.24 nm3. In their presence, larger organic molecules can only adsorb in the portions of the pore that are not occupied by hydronium ions. As a consequence, the available pore volume decreases proportionally to the concentration of the hydronium ions. The higher charge density (the increasing ionic strength) that accompanies an increasing concentration of hydronium ions leads to an increase in the activity coefficients of the adsorbed substrates, thus, weakening the interactions between the organic part of the molecules and the zeolite and favoring the interactions with polar groups. The quantitative understanding of these interactions makes it possible to link a collective property such as hydrophilicity and hydrophobicity of zeolites to specific interactions on molecular level.  相似文献   

15.
Commercial type X zeolites (Linde 13X) are nitrogen selective. Oxygen is the less abundant component in air; hence oxygen selective sorbents are desired for air separation. Mixed Na-Ce type X zeolites containing different ratios of Ce3+/Na+ ions are prepared by partial ion exchange of commercial X zeolite. The adsorption isotherms of nitrogen, oxygen and argon are measured and the pure-component selectivity ratios are compared and analyzed against commercial zeolites (13X) for air separation. Oxygen selectivity over nitrogen (1.5) and argon (4.0) are seen for mixed Na-Ce type X zeolite (Si/Al = 1.25; Ce3+/Na+ < 4.0) from Henry's constant determined from low pressure adsorption measurements. The oxygen and nitrogen isotherms cross over for mixed Na-Ce type X zeolite (Si/Al = 1.25; Ce3+/Na+ < 4.0), and the pressure at which cross they over increases as Ce3+/Na+ approaches 1. The oxygen selectivity as claimed in the patent by N.V. Choudary, R.V. Jasra, and S.G.T. Bhat (US Patent no. 6,087,289, 2000) is seen only at very low pressures in the volumetric adsorption measurement and the hydrogen treatment of the Ce-exchanged samples have no effect on the adsorption characteristics.  相似文献   

16.
Silver sulfide (Ag2S) clusters were synthesized in microporous zeolites and mesoporous AlMCM-41 by the sulfurization of Ag+ ions exchanged within the pores of the host. Characterization was performed by means of XRD, UV-Vis Ag K-edge XAFS and photoluminescence. The pore size of the host has great effects on the photoluminescence properties. Ag2S/AlMCM-41 showed photoluminescence at the longer wavelengths than Ag2S/zeolites. The photoluminescence band of Ag2S in the zeolite with 1-dimensional channels was narrow in comparison to the Ag2S in zeolites with 2- or 3-dimensional channels.  相似文献   

17.
The sorption behavior of cesium on zeolite and bentonite minerals and their mixtures was studied by means of a batch method and a tracer technique. All experiments were carried out in the presence of CsCl spiked with 137Cs and NaCl as a supporting electrolyte in varying concentrations. The distribution coefficients (K D) did not show significant differences at low Cs+ loadings while they decreased in the high loading region. Freundlich and D-R isotherms were applied to the adsorption data of zeolite and bentonite. Adsorption capacities and mean energies calculated from D-R isotherm parameters decreased by increasing ionic strength on both minerals. The identification of the specific uptake sites was attempted on the basis of the Freundlich isotherm. Experimentally observed distribution coefficients of Cs on two mineral mixtures were smaller than theoretically calculated values, except at the highest NaCl concentration.  相似文献   

18.
X-ray photoelectron spectroscopy (XPS or ESCA) based on calculated photoionization cross sections was used to investigate the surface Si/Al ratio of different zeolites and the cation distribution in Ag- and Ca-exchanged NaA-zeolites. We find the same module at the surface as in the bulk, but a strong de-alumination of the surface after HCl treatment. The Ag+ ions are enriched and the Na+ ions depleted in the outer cavities of the zeolite crystals, both in strong dependence on the Ca content.  相似文献   

19.
Cesium cation exchange reaction with K, Na, Ca and Mg ions on natural and modified clinoptilolite has been studied. Batch cation-exchange experiments were performed by placing 0.5 g of clinoptilolite into 10 ml or 20 ml of 1·10−3M CsCl solution for differing times. Two type deposits of clinoptilolite zeolites from, Nižny Hrabovec (NH), Slovakia and Metaxades (MX), Greece were used for ion-exchange study. The distribution coefficient (K d ) and sorption capacity (Γ) were evaluated. For the determination of K, Na, Ca and Mg isotachophoresis method, the most common cations in exchange reaction was used. Cesium sorption was studied using 137Cs tracer and measured by γ-spectrometry.  相似文献   

20.
紫外/臭氧法在脱除沸石有机模板剂中的应用   总被引:1,自引:0,他引:1  
选取LTA, FAU, BETA, MFI和MEL型沸石, 研究紫外/臭氧法在沸石有机模板剂脱除中的应用, 并与传统高温焙烧法比较, 考察两种方法对有机模板剂的脱除能力. 采用XRD, FT-IR, BET等方法对脱除模板剂前后的沸石样品进行表征, 结果表明紫外/臭氧法是一种低温有效除去沸石模板剂的方法. Beta, silicalite-1和silicalite-2沸石在紫外光照后相应的模板剂四乙基氢氧化铵、四丙基氢氧化铵和四丁基氢氧化铵已彻底脱除, A和Y型沸石中分别有27.5和6.2 wt%的四甲基氢氧化铵模板剂残留, 这主要是受其特殊β笼结构的限制而引起的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号