首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a family of doubly compensated multiplicity-edited heteronuclear single quantum coherence (HSQC) pulse sequences. The key difference between our proposed sequences and the compensation of refocusing inefficiency with synchronized inversion sweeps (CRISIS)-HSQC experiments they are based on is that the conventional rectangular 180 degrees pulses on the proton channel in the latter have been replaced by the computer-optimized broadband inversion pulses (BIPs) with superior inversion performance as well as much improved tolerance to B(1) field inhomogeneity. Moreover, all adiabatic carbon 180 degrees pulses during the INEPT and reverse-INEPT periods in the CRISIS-HSQC sequences have also been replaced with the much shorter BIPs, while the adiabatic sweeps during the heteronuclear spin echo for multiplicity editing are kept in place in order to maintain the advantage of the CRISIS feature of the original sequences, namely J-independent refocusing of the one-bond (1)H--(13)C coupling constants. These modifications have also been implemented to the preservation of equivalent pathways (PEP)-HSQC experiments. We demonstrate through a detailed comparison that replacing the proton 180 degrees pulses with the BIPs provide additional sensitivity gain that can be mainly attributed to the improved tolerance to B(1) field inhomogeneity of the BIPs. The proposed sequences can be easily adapted for (19)F--(13)C correlations.  相似文献   

2.
The acquisition time and quality of 1D 13C{1H} spectra can be improved substantially by using a modified driven equilibrium Fourier transform (DEFT) sequence, which is specifically designed to compensate for the effects of B1 inhomogeneity, pulse miscalibration and frequency offsets. The new sequence, called uniform driven equilibrium Fourier transform (UDEFT), returns the carbon magnetization with a high accuracy along its equilibrium position after each transient is complete. Thus, the sequence allows the use of relaxation delays (RD), which are much shorter than the carbon T1 of the molecule, thereby speeding up the acquisition process of 1D 13C{1H} spectra. To achieve this level of performance, UDEFT employs a refocusing element constituted by a composite adiabatic carbon pulse surrounded by two 90 degrees carbon pulses whose phases are designed to compensate for 90 degrees pulse miscalibrations in an MLEV manner (90 degrees+x-tau(FID)-180+y(Adia)-tau-90 degrees+x-180 degrees+x(Adia)). A version of the UDEFT sequence allows recording 1D 13C{1H} spectra devoid of heteronuclear NOE by using a matched adiabatic 1H decoupling scheme where an even number of 180 degrees adiabatic pulses is applied during the UDEFT module. Spectra of a solution of 300 mM camphor that contains some carbon nuclei with very long T1 relaxation times (90 s and 78 s) were acquired with 128 scans in 10 min using a 5 s relaxation delay.  相似文献   

3.
A modified version of CPMG-HSQMBC pulse scheme is presented for the measurement of long-range heteronuclear coupling constants. The method implements adiabatic inversion and refocusing pulses on the heteronucleus. Low-power composite 180° XY-16 CPMG pulse train is applied on both proton and X nuclei during the evolution of long-range couplings to eliminate phase distortions due to co-evolution of homonuclear proton-proton couplings. The pulse sequence yields pure absorption antiphase multiplets allowing precise and direct measurement of the (n)J(XH) coupling constants regardless from the size of the proton-proton couplings. The applicability of the method is demonstrated using strychnine as a model compound. The selective 1D version of the method is also presented.  相似文献   

4.
We describe here new versions of the DEPT phase-encoded HMQC experiment that offer robust performance and improved sensitivity. The new sequences rely on frequency-swept proton and carbon pulses to minimize signal losses from miscalibrated pulses while providing 'J compensation' to optimize the signal strength over a range of heteronuclear coupling constants. By including both proton and carbon-swept pulses, the new sequences also offer an additional signal gain of roughly 10% over well-calibrated hard-pulse experiments. The new sequences also demonstrate that one can construct a sequence that incorporates both 90 degrees and 180 degrees frequency-swept pulses. Although individual pulses in the sequence cause severe phase roll, the phase roll can be eliminated by the proper choice of pulse lengths and sweep directions.  相似文献   

5.
We propose the 13C-detecting 1D DEPT long-range C-C relay to detect super long-range H-C connectivity via four bonds (1H-13C-X-X-13C, X represents 12C or heteronuclear). It is derived from the DEPT C-C relay which detects the H-C correlations via two bonds (1H-13C-13C) by setting the delays for J(CC) in the C-C relay sequence to the (LR)J(CC). This sequence gives correlation signals split by small (LR)J(CC), which seriously suffers from residual center signal. The unwanted signal is due to long-range C-H couplings ((LR)J(CH)). The expected relayed magnetization transfer 1J(CH) --> (LR)J(CC) occurs in the 1H-13C-X-(X)-13C isotopomer, whereas the unwanted signal of (LR)J(CH) comes from 1H-12C-(X)-13C isotopomers, whose population is 100 times larger than that of the 1H-13C-X-(X)-13C isotopomer. The large dispersive line of this unwanted center signal would be a fatal problem in the case of detecting small (LR)J(CC) couplings. This central signal could be removed by an insertion of BIRD pulse or X-filter. DEPT spectrum editing solved a signal overlapping problem and enabled accurate determination of particular (LR)J(CC) values. We demonstrate here the examples of structure determination using connectivity between 1H and 13C via four bonds, and the application of long-range C-C coupling constants to discrimination of stereochemical assignments.  相似文献   

6.
Recently, we have introduced the ADEQUATE pulse sequence as a sensitive method to observe 13C,13C correlations in natural products. This kind of experiment suffers from offset‐dependent effects of the 180°(13C) pulses. Here we describe an application of smoothed chirp pulses in the ADEQUATE pulse sequence which allows 13C,13C correlations to be run without any offset dependences. This experiment is called chirp ADEQUATE and was applied to δ‐valerolactone and cholesteryl acetate. This modification will allow a general application of the ADEQUATE pulse sequence. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
The application of adiabatic inversion pulses to the detection of (1)H-(15)N heteronuclear correlations is described. The pulse sequences studied were gHSQC, CRISIS-gHSQC, gHMBC and CRISIS-gHMBC. The poor inversion quality of rectangular 180 degrees X pulses can lead to a loss of signal at the peripheries of the spectrum. Replacing these pulses with adiabatic sweeps significantly improves sensitivity across the potentially large (15)N spectral window. Satellite spectrum profiles are shown to demonstrate the increase in sensitivity when employing adiabatic pulses on wide spectral widths. Additionally, the active pharmaceutical nizatidine was used as a model compound to demonstrate the improvements in the long-range correlation data.  相似文献   

8.
Compensation of refocusing inefficiency in a gHMBC experiment by replacing the rectangular pi pulse with a pair of adiabatic pulses with synchronized inversion sweep (CRISIS) significantly improves the performance of the gHMBC experiment. The CRISIS-gHMBC experiment retains the pure absorptive shapes in F1 and hence results in better lineshape and higher resolution than the current versions of magnitude mode gHMBC spectra. When used as a broadband experiment, CRISIS-gHMBC, owing to better refocusing efficiency of the adiabatic pulse pairs, gives improved performance across the 13C spectral width. Moreover, it is shown that CRISIS-gHMBC is a robust and improved alternative and when used along with the IMPRESS (Improved Resolution using Symmetrically Shifted pulses) technique further increases the sensitivity and resolution without additional experimental time. The IMPRESS-CRISIS combination is demonstrated for broadband gHMBC and band-selective gHMBC experiments. The ICbs-gHMBC [IMPRESS-CRISIS-band-selective gHMBC] experiment is an attractive and better alternative to individual band-selective gHMBC.  相似文献   

9.
An improved version of the DEPTQ experiment yielding the signal and multiplicity information for all carbon types including the signals of quaternary carbons is proposed. It encompasses all the known advantages of the basic DEPT experiment. In comparison to the original version, signals of the sensitivity-limiting quaternary carbons are markedly increased: the initial 13C pulse may be adjusted to the Ernst angle, the NOE build-up period is prolonged by the split relaxation delay and a partial recovery of signal losses due to instrumental imperfections is achieved by the incorporation of composite adiabatic 13C refocussing pulses. Furthermore, pure absorption lineshapes for all carbon types are obtained with only one single scan. These attributes make this experiment attractive for 13C analysis of small molecules (including spectral editing), particularly in high-throughput analysis laboratories.  相似文献   

10.
Two pulse sequences applicable to the determination of relative signs of coupling constants, gHSQC-RELAY(P) and gHSQC-RELAY(D), were developed and tested. These sequences are suitable for determination of relative signs of long-range coupling constants (<2 Hz) between two heteronuclei of low abundance (such as (29)Si and (13)C), and are applicable even to cases in which one of the heteronuclei ((29)Si) does not exhibit coupling with some of the detected protons ((1)H). The two sequences differ in the manner in which they suppress undesirable homonuclear coherence transfers. Each of the sequences can be combined with an isotope filter for better suppression of the centerlines arising from more abundant NMR-inactive isotopes. The sequences were tested on ethoxytrimethylsilane and (E)-(buta-1,3-dienyloxy)trimethylsilane, and we conclude that (2)J((29)Si-O-(13)C) is positive while (3)J((29)Si-O-C-(13)C) is negative in both compounds.  相似文献   

11.
Site‐specific 13C isotope labeling is a useful approach that allows for the measurement of homonuclear 13C,13C coupling constants. For three site‐specifically labeled oligosaccharides, it is demonstrated that using the J‐HMBC experiment for measuring heteronuclear long‐range coupling constants is problematical for the carbons adjacent to the spin label. By incorporating either a selective inversion pulse or a constant‐time element in the pulse sequence, the interference from one‐bond 13C,13C scalar couplings is suppressed, allowing the coupling constants of interest to be measured without complications. Experimental spectra are compared with spectra of a nonlabeled compound as well as with simulated spectra. The work extends the use of the J‐HMBC experiments to site‐specifically labeled molecules, thereby increasing the number of coupling constants that can be obtained from a single preparation of a molecule. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Heteronuclear single quantum coherence (HSQC) sequences using adiabatic (or composite) 180 degrees pulses, suitable for applications requiring wide spectral widths in F2, are described. The sequences can be used with or without multiplicity editing. One variant will work even in the presence of homonuclear couplings that are equal to the heteronuclear 1-bond coupling.  相似文献   

13.
Efficient pulse sequences for measuring long-range C-H coupling constants (J(C-H)) and proton-proton spin coupling constants (J(H-H)), named BIRD-J-resolved HMBC and BIRD-high-resolution HMBC, respectively, have been developed. In spin systems possessing a secondary methyl group positioned between protonated carbons (e.g. -CH(2)-CH(CH(3))-CH(2)-), the methine proton splits in a complicated fashion, resulting in difficulty in the determination of its spin coupling constants. For easy and accurate measurements of the long-range J(C-H) and J(H-H) in such a spin system, the BIRD pulse [90°x(H)-180°x (H/C)- 90° (-x)(H)] or [90°x(H)-180°x(H/C)-90° (-x)(H)180°x(C)] is incorporated into the J-resolved portion of the pulse sequence. As a result, the above secondary methyl group can be selectively decoupled, providing simplified cross-peak patterns, which are suitable for the accurate measurements of the long-range J(C-H) and J(H-H).  相似文献   

14.
An improved version of the BIRD–HMBC experiment is proposed. In comparison to the original version, the filtering (suppression of 1 JCH signals) is accomplished using a double tuned G‐BIRD filter positioned in the middle of the long‐range correlations evolution period. Compensation of offset dependence by replacing the rectangular 180° pulses with the broadband inversion pulses (BIPs), with superior inversion performance and improved tolerance to B1 field inhomogeneity, significantly improves the sensitivity of the original BIRD–HMBC experiment. For usual one‐bond coupling constants ranges (115–180 Hz), optimal results are easily obtained by adjusting the delays, δ, of the BIRD elements to an average J value. For larger ranges (e.g. 110–260 Hz), the use of a double tuned G‐BIRD filter allows excellent suppression degrees for all types of one‐bond constants present in a molecule, superior to the original scheme and other purging schemes. These attributes make the improved version of the BIRD–HMBC experiment a valuable and robust tool for rapid spectral analysis and rapid checks of molecular skeletons with a minimum spectrometer time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
16.
This article describes new versions of the DEPT phase-edited heteronuclear single quantum correlation (HSQC) pulse sequence with sensitivity enhancement. The sequences incorporate frequency-swept carbon and proton pulses. The new experiments are inherently robust, well-suited for a high-throughput setting in which sample-to-sample variations may be ignored. The observed signal has the obvious benefit of sensitivity enhancement resulting from the preservation of two magnetization transfer pathways. The two pathways are maintained even in the version of the sequence in which all pulses are frequency-swept. There is an additional signal gain of roughly 10% that derives from the use of both proton and carbon frequency-swept pulses. Furthermore, the sequences use J compensation to provide optimal signal over a range of heteronuclear coupling constants. We demonstrate that the new sequences offer good sensitivity and perform well even when the NMR probe is deliberately mistuned.  相似文献   

17.
29Si-13C couplings were measured in para substituted silylated phenols, X--C6H4--O--SiR1R2R3 (X = NO2, CF3, Cl, F, H, CH3, CH3O). The SiR1R2R3 silyl groups included trimethylsilyl (Si(CH3)3, TMS), tert-butyldimethylsilyl (Si(CH3)2C(CH3)3, TBDMS), dimethylsilyl (SiH(CH3)2, DMS), and tert- butyldiphenylsilyl (Si(C6H5)2C(CH3)3, TBDPS). Previously developed (Si,C,Si)gHMQC methods and narrow 29Si lines allowed the determination of coupling constants over up to five bonds. Besides the number of intervening bonds between the silicon and carbon atoms, all the measurable couplings depend also on the nature of the substituents on the silicon. The two- and three-bond couplings are not affected by ring substitution in the para position. These properties render the 29Si-13C couplings suitable for line assignment in the spectra of silylated polyphenols. The experimental results are in reasonable agreement with theoretical calculations. The calculations show, in agreement with the data reported in the literature for couplings between other nuclei, that the two-bond and three-bond couplings, which are of similar magnitudes, are of opposite signs. If the signs of these geminal and vicinal couplings could be determined experimentally, they would greatly facilitate the line assignment. The four- and five-bond couplings are affected by the substituent X in a nontrivial manner.  相似文献   

18.
The sensitivity of cryoprobes, which are rapidly becoming available, means that the measurement of coupling constants involving 13C, 13C pairs at the natural abundance of 13C can now, in principle, be done by using tens rather then hundreds of milligrams of compounds. However, a robust method that would yield reliable values of small long-range carbon--carbon coupling constants is still missing. In this Communication, we describe a novel 13C-detected incredible natural-abundance double-quantum transfer experiment (INADEQUATE) experiment for simultaneous correlation of one-bond and long-range 13C- 13C pairs and the measurement of both types of coupling constants in 13C natural abundance samples. This method yields accurate values of one-bond and long-range coupling constants by manipulation of pure phase in-phase (IP) and antiphase (AP) doublets, and is referred to as 13C-detected IPAP-INADEQUATE. It is illustrated by the measurement of interglycosidic (3)J(CCOC) coupling constants in a disaccharide molecule providing important information about the conformation of the glycosidic linkage. Owing to the simplicity of INADEQUATE spectra the carbon-carbon coupling constants are particularly suitable for studies of partially oriented molecules through the measurement of carbon-carbon residual dipolar couplings (RDCs). An example of this approach is presented. We expect the method to find a variety of applications in the conformational analysis of small molecules, determination of diastereoisomers and enantiomers, and studies of molecules in aligned media.  相似文献   

19.
A novel two-dimensional NMR pulse sequence, H2BC, for long-range correlation of 1H and 13C nuclei is presented. The experiment has several attractive features compared to the widely used HMBC experiment, for example, (a) typically strong enhancement of correlations over two bonds while suppressing those over more bonds, that is, resolving ambiguities in standard HMBC spectra and showing two-bond correlations not present in HMBC spectra, (b) independence of long-range 1H-13C coupling constants, (c) full homo- and heteronuclear decoupling in the indirect dimension and heteronuclear decoupling in the acquisition dimension, (d) pure 2D absorption peak shapes, and (e) a pulse sequence duration significantly shorter than that of HMBC. The experiment is quite complementary to HMBC and does not effect correlations to quaternary carbons that must be obtained by HMBC.  相似文献   

20.
(15)N-enriched dihydroxamic acids (HONHCO(CH(2))(n)CONHOH, n = 0, 1, and 2) were prepared and their spectra NMR ((1)H, (13)C, (15)N) recorded in dimethyl sulfoxide (DMSO) solutions with the aim of determining (15)N coupling constants ((15)N-(1)H and (15)N-(13)C). The results supplement chemical shifts published earlier and yield additional support to the structural conclusions derived from other NMR parameters. Notably, no trace of hydroximic structures could be found in the (15)N NMR spectra of these acids. The values of (15)N-(13)C coupling constants backed by theoretical calculations support the assignments made earlier for all of the major conformers and for the minor conformer of succinohydroxamic acid. The enrichment revealed that the minor component of malonodihydroxamic acid solution previously considered to be the ZE conformer is in fact the monohydroxamic acid (HOOC-CH(2)-CO-NH-OH).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号