首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fourier transform ion cyclotron resonance (FTICR) mass spectrometry has become a widely used method to study biopolymers. The method, in combination with an electrospray ionization (ESI) source has demonstrated the highest resolution and accuracy yet achieved for characterization of biomolecules and their noncovalent complexes. The most common design for the ESI interface includes a heated capillary inlet followed by a skimmer having a small orifice to limit gas conductance between a higher pressure (1 to 5 torr) source region and the lower pressure ion guide. The ion losses in the capillary-skimmer interface are large (estimated to be more than 90%) and thus reduce achievable sensitivity. In this work, we report on the initial implementation of a newly developed electrodynamic ion funnel in a 3.5 tesla ESI-FTICR mass spectrometer. The initial results show dramatically improved ion transmission as compared to the conventional capillary-skimmer arrangement. An estimated detection limit of 30 zeptomoles (approximately 18,000 molecules) has been achieved for the analysis of the proteins with molecular weights ranging from 8 to 20 kDa.  相似文献   

3.
4.
Baidianling Capsule, which is made from 16 Chinese herbs, has been widely used for treating vitiligo clinically. In this study, the sensitive and rapid method has been developed for the analysis of chemical components in Baidianling Capsule by gas chromatography–mass spectrometry in combination with retention indices and high‐performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. Firstly, a total of 110 potential volatile compounds obtained from different extraction procedures including alkanes, alkenes, alkynes, ketones, ethers, aldehydes, alcohols, phenols, organic acids, esters, furans, pyrrole, acid amides, heterocycles, and oxides were detected from Baidianling Capsule by gas chromatography–mass spectrometry, of which 75 were identified by mass spectrometry in combination with the retention index. Then, a total of 124 components were tentatively identified by high‐performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. Fifteen constituents from Baidianling Capsule were accurately identified by comparing the retention times with those of reference compounds, others were identified by comparing the retention times and mass spectrometry data, as well as retrieving the reference literature. This study provides a practical strategy for rapidly screening and identifying the multiple constituents of a complex traditional Chinese medicine.  相似文献   

5.
Fast gradient high performance liquid chromatography (HPLC) has been combined with a commercially available Fourier transform ion cyclotron resonance (FTICR) mass spectrometer for the routine and high performance analysis of mixtures. With this combination we were able to separate and detect, under high mass accuracy conditions, a six-component drug mixture in less than 5 minutes. The fast gradients described are now possible due to the development of mechanically robust, ultra pure silica packing materials, which allow relatively high flow rates (ca. 1 mL/min for a 2 mm diameter column). For the six compounds present in the model mixture, relative mass errors of less than 1 ppm were obtained (based on an external calibration) providing sufficient mass accuracy to make unequivocal assignments of empirical formulae. Preliminary results of fast gradient HPLC/FTICR-MS/MS are also shown for the same six-component mixture. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

6.
To further clarify the role of dopant solvent in proton transfer in atmospheric pressure photoionization (APPI), we employ ultrahigh-resolution FT-ICR mass analysis to identify M(+*), [M + H](+), [M - H](-), and [M + D](+) species in toluene or perdeuterotoluene for an equimolar mixture of five pyrrolic and pyridinic nitrogen heterocyclic model compounds, as well as for a complex organic mixture (Canadian Athabasca bitumen middle distillate). In the petroleum sample, the protons in the [M + H](+) species originate primarily from other components of the mixture itself, rather than from the toluene dopant. In contrast to electrospray ionization, in which basic (e.g., pyridinic) species protonate to form [M + H](+) positive ions and acidic (e.g., pyrrolic) species deprotonate to form [M - H](-) negative ions, APPI generates ions from both basic and acidic species in a single positive-ion mass spectrum. Ultrahigh-resolution mass analysis (in this work, m/Deltam(50%) = 500,000, in which Deltam(50%) is the mass spectral peak full width at half-maximum peak height) is needed to distinguish various close mass doublets: (13)C versus (12)CH (4.5 mDa), (13)CH versus (12)CD (2.9 mDa), and H(2) versus D (1.5 mDa).  相似文献   

7.
The photodecomposition of imazamox, a herbicide of the imidazolinone family, was investigated in pure water. The main photoproducts from the photolysis were followed over time by liquid chromatography mass spectrometry and structures were proposed from exact mass determinations obtained by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. The method comprised exact mass determination with better than 0.2 ppm mass accuracy and a corresponding structural visualization taking care of respective isotopes with an adapted van Krevelen diagram that enabled a systematic approach to the characterisation of the elementary composition of each photoproduct. By taking advantage of the high resolving power of FT-ICR MS to make precise formula assignments, the derived 2D van Krevelen diagram (O/C; H/C; m/z) enabled one to structurally differentiate the formed photoproducts and to propose a degradation pathway for imazamox. Figure Overview of applied method to analyse the photolysis process of imazamox herbicide  相似文献   

8.
9.
10.
To improve the existing ion transport optics of our glow discharge (GD)-Fourier transformion cyclotron resonance (FT-ICR) mass spectrometer, we simulated several ion trajectories between the GD source region and the ICR analyzer cell. These calculations suggested that a number of simple improvements, including the use of an ion flight tube and an electrically isolated conductance limit, would increase the efficiency of ion transfer through the fringing fields of the FT-ICR superconducting magnet and into the ICR analyzer cell. Ion beam intensity was monitored as a function of the distance between the GD source and the analyzer cell before and after implementing these improvements. A twentyfold improvement in the transport efficiency, as well as a fifteenfold enhancement in detected ET-ICR signals, was observed.  相似文献   

11.
For structural studies of proteins and their complexes, chemical cross-linking combined with mass spectrometry presents a promising strategy to obtain structural data of protein interfaces from low quantities of proteins within a short time. We explore the use of isotope-labeled cross-linkers in combination with Fourier transform ion cyclotron resonance (FTICR) mass spectrometry for a more efficient identification of cross-linker containing species. For our studies, we chose the calcium-independent complex between calmodulin and a 25-amino acid peptide from the C-terminal region of adenylyl cyclase 8 containing an "IQ-like motif." Cross-linking reactions between calmodulin and the peptide were performed in the absence of calcium using the amine-reactive, isotope-labeled (d0 and d4) cross-linkers BS3 (bis[sulfosuccinimidyl]suberate) and BS2G (bis[sulfosuccinimidyl]glutarate). Tryptic in-gel digestion of excised gel bands from covalently cross-linked complexes resulted in complicated peptide mixtures, which were analyzed by nano-HPLC/nano-ESI-FTICR mass spectrometry. In cases where more than one reactive functional group, e.g., amine groups of lysine residues, is present in a sequence stretch, MS/MS analysis is a prerequisite for unambiguously identifying the modified residues. MS/MS experiments revealed two lysine residues in the central alpha-helix of calmodulin as well as three lysine residues both in the C-terminal and N-terminal lobes of calmodulin to be cross-linked with one single lysine residue of the adenylyl cyclase 8 peptide. Further cross-linking studies will have to be conducted to propose a structural model for the calmodulin/peptide complex, which is formed in the absence of calcium. The combination of using isotope-labeled cross-linkers, determining the accurate mass of intact cross-linked products, and verifying the amino acid sequences of cross-linked species by MS/MS presents a convenient approach that offers the perspective to obtain structural data of protein assemblies within a few days.  相似文献   

12.
Accurately measured peptide masses can be used for large-scale protein identification from bacterial whole-cell digests as an alternative to tandem mass spectrometry (MS/MS) provided mass measurement errors of a few parts-per-million (ppm) are obtained. Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) routinely achieves such mass accuracy either with internal calibration or by regulating the charge in the analyzer cell. We have developed a novel and automated method for internal calibration of liquid chromatography (LC)/FTICR data from whole-cell digests using peptides in the sample identified by concurrent MS/MS together with ambient polydimethylcyclosiloxanes as internal calibrants in the mass spectra. The method reduced mass measurement error from 4.3 +/- 3.7 ppm to 0.3 +/- 2.3 ppm in an E. coli LC/FTICR dataset of 1000 MS and MS/MS spectra and is applicable to all analyses of complex protein digests by FTICRMS.  相似文献   

13.
A new collision-induced dissociation (CID) technique based on broadband tailored noise waveform (TNW) excitation of ions stored in a linear ion trap has been developed. In comparison with the conventional sustained off-resonance irradiation (SORI) CID method commonly used in Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), this MS/MS technique increases throughput by eliminating the long pump-down delay associated with gas introduction into the high vacuum ICR cell region. In addition, the TNW-CID method speeds spectrum acquisition since it does not require Fourier transformation, calculation of resonant frequencies and generation of the excitation waveforms. We demonstrate TNW-CID coupled with on-line capillary reverse-phase liquid chromatography separations for the identification of peptides. The experimental results are compared with data obtained using conventional quadrupole ion trap MS/MS and SORI-CID MS/MS in an ICR cell.  相似文献   

14.
A perspective is presented centered on the author’s contributions to developments involving electrospray ionization–mass spectrometry, capillary electrophoresis–mass spectrometry, and Fourier transform ion cyclotron resonance (FTICR) mass spectrometry and their applications to biological systems, with a special emphasis on the study of noncovalent complexes and proteomics.  相似文献   

15.
A new matrix-assisted laser desorption/ionization (MALDI) source for Fourier transform ion cyclotron resonance mass spectrometry (FTMS) has been developed. The new source is equipped with a hexapole ion guide. The sample on the laser target is one millimeter from the hexapole ion guide, so that ions are desorbed directly into the guide. A device for pulsing collision gas in direct proximity to the laser target makes it possible to cool the ions, which have a kinetic energy spread of several electron volts when produced by the MALDI process. These ions are trapped in the hexapole where positive potentials at the laser target and at an extraction plate help trap ions along the longitudinal axis. After a pre-defined trapping time the voltage of the extraction plate is reversed and the trapped ions are extracted for transmission to the ion cyclotron resonance cell. Accumulation of ions from multiple laser shots in the hexapole before mass spectrometric analysis increases sensitivity. Preliminary sensitivity studies with substance P show that 10 attomoles of analyte applied on the target can be detected with a signal-to-noise (S/N) ratio >15.  相似文献   

16.
Capillary liquid chromatography based on particulate and monolithic stationary phases was used to screen complex peptide libraries by fast gradient elution coupled on-line to electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS). A slightly modified commercial electrospray interface consisting of a fused-silica transfer capillary and low dead volume stainless steel union at which the electrospray voltage was grounded enabled the effluent of all the capillary columns to be directly sprayed into the mass spectrometer. Stable electrospray conditions were generated over a wide range of mobile phase compositions, alleviating the need for a tapered end of the spray capillary, pneumatic assistance or preheated nebulizer gas. Since the identification of complex samples containing numerous isobaric substances is facilitated by chromatographic separation prior to mass spectrometry, stationary phase materials have been employed which offer a fast, efficient elution and, due to the complexity of samples, a high loading capacity. Silica-based monolithic capillary columns combine these three characteristics in a unique manner due to a tailored adjustment of both macro- and mesopore sizes in the highly porous silica structure. As we demonstrate by a comparative study of the silica-based monolithic and packed capillaries for LC/MS analysis of complex peptide libraries, silica monoliths show superior performance over packed beds of small-diameter particles with respect to analysis time and separation efficiency. Libraries with more than 1000 different peptides could be screened in less than 20 min.  相似文献   

17.
18.
The identification of two unsaturated N‐acylhomoserine lactones (AHLs) produced by Rhodobacter sphaeroides bacteria, based on liquid chromatography (LC) coupled to a hybrid quadrupole linear ion trap (LTQ)‐Fourier transform ion cyclotron resonance (FTICR) mass spectrometer upon electrospray ionization (ESI), is presented. Besides the confirmation of the signaling molecule already described in the literature, i.e. (Z)‐N‐tetradec‐7‐enoyl‐homoserine lactone (C14:1‐HSL), we have discovered the occurrence, at low, yet significant levels, of another monounsaturated compound, C12:1‐HSL, which may extend the number of small diffusible chemical signals known for R. sphaeroides. Both unsaturated AHLs were identified by high‐resolution FTICR mass spectrometry in extracts of bacterial culture media and the occurrence of a C=C bond was assessed upon their conversion into bromohydrins. Collision‐induced dissociation (CID) spectra were then collected on the LTQ mass analyzer. A careful comparison of tandem MS spectra of monounsaturated (i.e., C12:1‐HSL and C14:1‐HSL) and saturated AHLs (i.e. C12‐HSL and C14‐HSL) led to the emphasis of two series of product ions, exhibiting 14 Da spaced m/z ratios. Both series were referred to progressive fragmentations at the aliphatic end of the AHL acyl chains, followed by neutral losses of terminal alkenes (i.e. CH2=CH(CH2)nH). In particular, the series located at the higher end of the explored m/z range (>200 Da), observed only for monounsaturated species, enabled the location of the C=C bond between carbons 7 and 8 of the acyl chain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A new approach to protein and peptide analysis that involves the coupling of on-line capillary electrophoresis-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry with a variation of sustained off-resonance irradiation is described. With this technique, multiple irradiation frequencies are broadcast simultaneously, which yields fragmentation of species at different mass-to-charge ratio values from the same waveform. In conjunction with capillary electrophoresis, this technique can provide sequence information from small amounts of proteins or peptides in complex mixtures. Initial results obtained from a mixture of gramicidin S (1141 u), bee venom melittin (2845 u), and equine apomyoglobin (16,951 u) are presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号