首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We obtain a non-Abelian version of a theory involving vector and tensor gauge fields interacting via a massive topological coupling, besides the nonminimun one. The new fact is that the non-Abelian theory is not reducible and Stuckelberg fields are introduced in order to make compatible gauge invariance, nontrivial physical degrees of freedom and the limit of the Abelian case.  相似文献   

2.
We formulate a general gauge invariant Lagrangian construction describing the dynamics of massive higher spin fermionic fields in arbitrary dimensions. Treating the conditions determining the irreducible representations of Poincaré group with given spin as the operator constraints in auxiliary Fock space, we built the BRST charge for the model under consideration and find the gauge invariant equations of motion in terms of vectors and operators in the Fock space. It is shown that like in massless case [I.L. Buchbinder, V.A. Krykhtin, A. Pashnev, Nucl. Phys. B 711 (2005) 367, hep-th/0410215], the massive fermionic higher spin field models are the reducible gauge theories and the order of reducibility grows with the value of spin. In compare with all previous approaches, no off-shell constraints on the fields and the gauge parameters are imposed from the very beginning, all correct constraints emerge automatically as the consequences of the equations of motion. As an example, we derive a gauge invariant Lagrangian for massive spin 3/2 field.  相似文献   

3.
We fulfill the detailed analysis of coupling the charged bosonic higher-spin fields to external constant electromagnetic field in first order in external field strength. Cubic interaction vertex of arbitrary massive and massless bosonic higher-spin fields with external field is found. Construction is based on deformation of free Lagrangian and free gauge transformations by terms linear in electromagnetic field strength. In massive case a formulation with Stueckelberg fields is used. We begin with the most general form of deformations for Lagrangian and gauge transformations, admissible by Lorentz covariance and gauge invariance and containing some number of arbitrary coefficients, and require the gauge invariance of the deformed theory in first order in strength. It yields the equations for the coefficients which are exactly solved. As a result, the complete interacting Lagrangian of arbitrary bosonic higher-spin fields with constant electromagnetic field in first order in electromagnetic strength is obtained. Causality of massive spin-2 and spin-3 fields propagation in the corresponding electromagnetic background is proved.  相似文献   

4.
《Physics letters. [Part B]》1986,173(3):284-288
Gauge invariant and gauge fixed BRS invariant actions are constructed in arbitrary dimensions for free massless integer spin fields carrying mixed representations of the Lorentz group described by Young tableaux (2, 1, 1, …, 1)n. The complete ghost spectrum is deduced by demanding nilpotency of the BRS transformations and leads to a correct count of the on-shell degrees of freedom. Dimensional reduction is used to study the corresponding gauge invariant massive theory. On-shell consistency is then ensured by the fact that the masses arise via a “telescopic Higgs effect”.  相似文献   

5.
Einstein’s equations in a tetrad formulation are derived from a linear theory in flat spacetime with an asymmetric potential using free field gauge invariance, local Lorentz invariance and universal coupling. The gravitational potential can be either covariant or contravariant and of almost any density weight. These results are adapted to produce universally coupled massive variants of Einstein’s equations, yielding two one-parameter families of distinct theories with spin 2 and spin 0. The theories derived, upon fixing the local Lorentz gauge freedom, are seen to be a subset of those found by Ogievetsky and Polubarinov some time ago using a spin limitation principle. In view of the stability question for massive gravities, the proven non-necessity of positive energy for stability in applied mathematics in some contexts is recalled. Massive tetrad gravities permit the mass of the spin 0 to be heavier than that of the spin 2, as well as lighter than or equal to it, and so provide phenomenological flexibility that might be of astrophysical or cosmological use.  相似文献   

6.
An Abelian gauge theory describing dynamics of massive spin one bosons is constructed. This is achieved by appending to the Maxwell action, a gauge invariant mass term. The theory is quantised in temporal as well as Lorentz gauge, and the corresponding Hilbert spaces are constructed. In both the gauges, it is found that, the theory respects Lorentz invariance, locality, causality and unitarity.  相似文献   

7.
《Nuclear Physics B》2005,727(3):537-563
We develop the BRST approach to Lagrangian formulation for massive higher integer spin fields on a flat space–time of arbitrary dimension. General procedure of gauge invariant Lagrangian construction describing the dynamics of massive bosonic field with any spin is given. No off-shell constraints on the fields (like tracelessness) and the gauge parameters are imposed. The procedure is based on construction of new representation for the closed algebra generated by the constraints defining an irreducible massive bosonic representation of the Poincaré group. We also construct Lagrangian describing propagation of all massive bosonic fields simultaneously. As an example of the general procedure, we derive the Lagrangians for spin-1, spin-2 and spin-3 fields containing total set of auxiliary fields and gauge symmetries of free massive bosonic higher spin field theory.  相似文献   

8.
In the new framework of gravitational quantum field theory(GQFT) with spin and scaling gauge invariance developed in Phys. Rev. D 93(2016) 024012-1, we make a perturbative expansion for the full action in a background field which accounts for the early inflationary universe. We decompose the bicovariant vector fields of gravifield and spin gauge field with Lorentz and spin symmetries SO(1,3) and SP(1,3) in biframe spacetime into SO(3) representations for deriving the propagators of the basic quantum fields and extract their interaction terms. The leading order Feynman rules are presented. A tree-level 2 to 2 scattering amplitude of the Dirac fermions, through a gravifield and a spin gauge field, is calculated and compared to the Born approximation of the potential. It is shown that the Newton's gravitational law in the early universe is modified due to the background field. The spin dependence of the gravitational potential is demonstrated.  相似文献   

9.
In this work we develop the BRST approach to Lagrangian construction for the massive integer higher spin fields in an arbitrary dimensional AdS space. The theory is formulated in terms of auxiliary Fock space. Closed nonlinear symmetry algebra of higher spin bosonic theory in AdS space is found and a method of deriving the BRST operator for such an algebra is proposed. A general procedure of Lagrangian construction, describing the dynamics of a bosonic field with any spin is given on the base of the BRST operator. No off-shell constraints on the fields and the gauge parameters are used from the very beginning. As an example of general procedure, we derive the Lagrangians for massive bosonic fields with spin 0, 1 and 2, containing the total set of auxiliary fields and gauge symmetries.  相似文献   

10.
In the new framework of gravitational quantum field theory (GQFT) with spin and scaling gauge invariance developed in Phys. Rev. D 93 (2016) 024012-1, we make a perturbative expansion for the full action in a background field which accounts for the early inflationary universe. We decompose the bicovariant vector fields of gravifield and spin gauge field with Lorentz and spin symmetries SO(1,3) and SP(1,3) in biframe spacetime into SO(3) representations for deriving the propagators of the basic quantum fields and extract their interaction terms. The leading order Feynman rules are presented. A tree-level 2 to 2 scattering amplitude of the Dirac fermions, through a gravifield and a spin gauge field, is calculated and compared to the Born approximation of the potential. It is shown that the Newton's gravitational law in the early universe is modified due to the background field. The spin dependence of the gravitational potential is demonstrated.  相似文献   

11.
In this review paper, we discuss how gravity and spin can be obtained as the realization of the local Conformal-Affine group of symmetry transformations. In particular, we show how gravitation is a gauge theory which can be obtained starting from some local invariance as the Poincaré local symmetry. We review previous results where the inhomogeneous connection coefficients, transforming under the Lorentz group, give rise to gravitational gauge potentials which can be used to define covariant derivatives accommodating minimal couplings of matter, gauge fields (and then spin connections). After we show, in a self-contained approach, how the tetrads and the Lorentz group can be used to induce the spacetime metric and then the Invariance Induced Gravity can be directly obtained both in holonomic and anholonomic pictures. Besides, we show how tensor valued connection forms act as auxiliary dynamical fields associated with the dilation, special conformal and deformation (shear) degrees of freedom, inherent to the bundle manifold. As a result, this allows to determine the bundle curvature of the theory and then to construct boundary topological invariants which give rise to a prototype (source free) gravitational Lagrangian. Finally, the Bianchi identities, the covariant field equations and the gauge currents are obtained determining completely the dynamics.  相似文献   

12.
Yue-Liang Wu 《中国物理C(英文版)》2017,41(10):103106-103106
The relativistic Dirac equation in four-dimensional spacetime reveals a coherent relation between the dimensions of spacetime and the degrees of freedom of fermionic spinors. A massless Dirac fermion generates new symmetries corresponding to chirality spin and charge spin as well as conformal scaling transformations. With the introduction of intrinsic W-parity, a massless Dirac fermion can be treated as a Majorana-type or Weyl-type spinor in a six-dimensional spacetime that reflects the intrinsic quantum numbers of chirality spin. A generalized Dirac equation is obtained in the six-dimensional spacetime with a maximal symmetry. Based on the framework of gravitational quantum field theory proposed in Ref. [1] with the postulate of gauge invariance and coordinate independence, we arrive at a maximally symmetric gravitational gauge field theory for the massless Dirac fermion in six-dimensional spacetime. Such a theory is governed by the local spin gauge symmetry SP(1,5) and the global Poincar′e symmetry P(1,5)= SO(1,5) P~(1,5) as well as the charge spin gauge symmetry SU(2). The theory leads to the prediction of doubly electrically charged bosons. A scalar field and conformal scaling gauge field are introduced to maintain both global and local conformal scaling symmetries. A generalized gravitational Dirac equation for the massless Dirac fermion is derived in the six-dimensional spacetime. The equations of motion for gauge fields are obtained with conserved currents in the presence of gravitational effects. The dynamics of the gauge-type gravifield as a Goldstone-like boson is shown to be governed by a conserved energy-momentum tensor, and its symmetric part provides a generalized Einstein equation of gravity. An alternative geometrical symmetry breaking mechanism for the mass generation of Dirac fermions is demonstrated.  相似文献   

13.
The prevailing theoretical quark and gluon momentum, orbital angular momentum and spin operators, satisfy either gauge invariance or the corresponding canonical commutation relation, but one never has these operators which satisfy both except the quark spin. The conflicts between gauge invariance and the canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both gauge invariance and canonical momentum and angular momentum commutation relation, are proposed. To achieve such a proper decomposition the key point is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also exist in QED and quantum mechanics, and have been solved in the same manner. The impacts of this new decomposition to the nucleon internal structure are discussed.  相似文献   

14.
《Nuclear Physics B》1986,271(2):369-378
Possible modifications of the relativistic string which preserves conformal invariance in the conformal gauge is investigated using zweibein fields. A fully reparametrization-invariant action yielding Liouville's equation is then constructed without the introduction of auxiliary fields. This action breaks the local two-dimensional Lorentz invariance and the corresponding extra degree of freedom reduces in the conformal gauge to a free field. For open strings the variation of the action implies that the Liouville field and this free field are connected by a Bäcklund transformation at the boundary. In certain cases it is shown that this extends to hold everywhere. If the local Lorentz invariance is restored, then the reparametrization algebra acquires the anomalous term necessary for the quantization in subcritical dimensions.  相似文献   

15.
16.
T Pradhan  R P Malik  P C Naik 《Pramana》1985,24(1-2):77-94
In this paper we present a review of our investigations on universal long range force between spins mediated by a massless axial vector gauge field which we name as “axial photon”. The invariance of the Lagrangian field theory of particles, possessing spin degrees of freedom, under local Lorentz transformations, necessitates the introduction of such an axial vector gauge field which interacts with spin current of the particles. Classical as well as quantum dynamics of electrons interacting with photon and axial photon are worked out. The new interaction is found to be asymptotically free. It is shown thatqed can be made finite if the coupling strengths of electron to photon and axial photon can be made equal. Experimental consequences of the existence of axial photon are discussed and the strength of the interaction is estimated by comparing predictions of the theory with experiments.  相似文献   

17.
A path-integral for the t–JtJ model in two dimensions is constructed based on Dirac quantization, with an action found originally by Wiegmann [P. Wiegmann, Phys. Rev. Lett. 60 (1988) 821; P. Wiegmann, Nucl. Phys. B 323 (1989) 311]. Concentrating on the low doping limit, we assume short range antiferromagnetic order of the spin degrees of freedom. Going over to a local spin quantization axis of the dopant fermions, that follows the spin degree of freedom, staggered CP1 fields result and the constraint against double occupancy can be resolved. The staggered CP1 fields are split into slow and fast modes, such that after a gradient expansion, and after integrating out the fast modes and the dopant fermions, a CP1 field-theory with a massive gauge field is obtained that describes generically incommensurate coplanar magnetic structures, as discussed previously in the context of frustrated quantum antiferromagnets. Hence, the possibility of deconfined spinons is opened by doping a colinear antiferromagnet.  相似文献   

18.
Using the light-cone gauge approach to relativistic field dynamics, we study arbitrary spin fermionic and bosonic fields propagating in flat space of dimension greater than or equal to four. Generating functions of parity invariant cubic interaction vertices for totally symmetric and mixed-symmetry massive and massless fields are obtained. For the case of totally symmetric fields, we derive restrictions on the allowed values of spins and the number of derivatives. These restrictions provide a complete classification of parity invariant cubic interaction vertices for totally symmetric fermionic and bosonic fields. As an example of application of the light-cone formalism, we obtain simple expressions for the Yang–Mills and gravitational interactions of massive arbitrary spin fermionic fields. For some particular cases, using our light-cone cubic vertices, we discuss the corresponding manifestly Lorentz invariant and on-shell gauge invariant cubic vertices.  相似文献   

19.
The concept of perturbative gauge invariance formulated exclusively by means of asymptotic fields is generalized to massive gauge fields. Applying it to the electroweak theory leads to a complete fixing of couplings of scalar and ghost fields and of the coupling to leptons, in agreement with the standard theory. The W/Z mass ratio is also determined, as well as the chiral character of the fermions. We start directly with massive gauge fields and leptons and, nevertheless, obtain a theory which satisfies perturbative gauge invariance.  相似文献   

20.
It is unavoidable to deal with the quark and gluon momentum and angular momentum contributions to the nucleon momentum and spin in the study of nucleon internal structure. However we never have the quark and gluon momentum, orbital angular momentum and gluon spin operators which satisfy both the gauge invariance and the canonical momentum and angular momentum commutation relation. The conflicts between the gauge invariance and canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both the gauge invariance and canonical momentum and angular momentum commutation relation, are proposed. The key point to achieve such a proper decomposition is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also exist in QED and quantum mechanics and have been solved in the same manner. The impacts of this new decomposition to the nucleon internal structure are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号