首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyacrylophenone (aPAP), poly-4′-ethylacrylophenone (aP4EAP), poly-4′-methoxyacrylophenone (aP4MAP) and poly-4′-phenylacrylophenone (aP4PAP) were prepared by anionic polymerization initiated by lithium tert-butoxide. 1H NMR analysis revealed higher content of isotactic dyads for aPAP (86%) and aP4MAP (88%) compared with polymers rPAP (60%) and rP4MAP (60%) prepared by radical polymerization. 1H NMR spectra of a aP4EAP and a P4PAP were too complicated for analysis and 13C NMR spectra were not sensitive to stereostructure. The molecular weights of anionic polyacrylophenones were about 5000. In emission spectra, a bathochromic shift was observed in going from model compound to anionic and radical polymer doped in poly(methyl methacrylate) film at 77°K. The emission decay of rP4PAP and aP4PAP is non-exponential in comparison with model 4′-phenyl-3-chloropropiophenone. The bathochromic shift in the emission spectra and the non-exponential emission decay of polymers depends on molecular weight suggesting that the number of structural perturbations (triplet excimers) increases with molecular weight.  相似文献   

2.
Monomers of the methacrylate type, viz. 1-[4-(2-methacroyloxyethoxy)phenyl] propandione-1,2 (7a) and 1-phenyl-2-[4-(2-methacroyloxyethoxy)phenyl] ethandione-1,2 (7b) having the 1,2-dicarbonyl chromophore in the side-chain, were synthesized. The soluble homopolymer of monomer 76 and copolymers of both monomers 7a and 7b with styrene and methyl methacrylate were prepared by radical polymerization in solution. The absorption and emission spectra of a model compound and the homopolymer showed that the 1,2-dicarbonyl chromophore behaved as an isolated unit. No fluorescence was observed for the model compound or the homopolymer in emission spectra of poly(methyl methacrylate)-doped films. Phosphorescence of low- and high-molecular carbonyls was quenched by ferrocene in solution. Comparison of Stern-Volmer constants indicates partial steric hindrance of energy transfer for high-molecular donor.  相似文献   

3.
Different concentrations of copolymer of (N-(4-chlorophenyl) acrylamide) (CA) with methyl methacrylate (MMA) were prepared and the reactivity ratio values of copolymerization were calculated using 1H NMR technique. Thermal analysis of the copolymers showed that the thermal stability is intermediate between poly(N-(4-chlorophenyl) acrylamide) (PCA) and poly(methyl methacrylate) (PMMA) homopolymers. Thermal degradation products of the PCA were identified by GC–MS techniques. It seems that the mechanism of degradation of PCA homopolymer is characterized by free radical formation followed by recombination along the backbone chain. The activation energies of the thermal degradation of the copolymers were calculated using Arrhenius relationship.  相似文献   

4.
Vinyl derivatives of sterically hindered amines, N-(2,2,6,6-tetramethyl-4-piperidyl)methacrylamide, 2,2,6,6-tetramethyl-4-piperidyl acrylate and methacrylate and 1,2,2,6,6-pentamethyl-4-piperidyl acrylate and methacrylate were prepared. Monomers, homopolymers and copolymers with dodecyl methacrylate (DMA) and octadecyl acrylate (ODA) were tested as stabilisers of the photo-oxidation of polypropylene film. The copolymers exhibited higher efficiency and lower extractability. The photostabilising efficiency increased in the order: homopolymer < monomer < copolymer with DMA < copolymer with ODA.  相似文献   

5.
Diblock copolymers with polymethyl methacrylate and side chain liquid crystalline (LC) azopolymethacrylate blocks were synthesized by atom transfer radical polymerization (ATRP). The azobenzene content in these copolymers ranges from 52 to 7 wt %. For an azo content down to 20% they exhibit a LC behavior similar to that of the azo homopolymers. Thin films of these copolymers were characterized by transmission electron microscopy (TEM). A lamellar nanostructure was observed for azo content down to 20 wt %, while no structure is observed for the copolymer with a 7% azo content. The optical anisotropy induced in these films by illumination with linearly polarized 488 nm light was studied and the results compared with those of the azo homopolymer and of a random copolymer with a similar composition. The formation of azo aggregates inside the azo blocks is strongly reduced in going from the homopolymer to the copolymers. Photoinduced azo orientation perpendicular to the 488 nm light polarization was found in all the polymers. The orientational order parameter is very similar in the homopolymer and in the block copolymers with an azo content down to 20 wt %, while it is much lower in the random copolymer and in the 7 wt %. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1899–1910, 2007  相似文献   

6.
Abstract

3-Tetrahydrofurfuryloxy-2-hydroxypropyl methacrylate monomer was prepared from methacrylic acid, tetrahydrofurfuryl alchol, and epichlorhydrin. Homopolymerization and copolymerization with (2-phenyl-1,3-dioxolane-4-yl)methyl methacrylate and N-vinyl pyrrolidone monomers were carried out in 1,4-dioxane solution at 60°C using benzoyl peroxide as initiator. Infrared, proton and carbon-13 nuclear magnetic resonance techniques were used in characterizations of the monomer, the homopolymer and the copolymers were determined by DSC technique. The copolymer compositions were estimated from 1H-NMR spectra. The reactivity ratios in copolymerization of 3-tetrahydrofurfuryloxy-2-hydroxypropyl methacrylate and (2-phenyl-1,3-dioxolane-4-yl) methyl methacrylate were calculated by both Kelen-Tüdos and Fineman-Ross methods.  相似文献   

7.
The effects of molecular weight and concentration of poly (methyl methacrylate) (PMMA) homopolymer or symmetric short polystyrene-block-poly (methyl methacrylate) (PS-b-PMMA) diblock copolymer on the size of the nanostructures of its blends with symmetric long PS-b-PMMA diblock copolymer have been investigated by atomic force microscopy. By careful controlling of the film thickness, solvent selectivity, and annealing time, PMMA cylindrical microdomains oriented normal to the film surface were obtained in all thin films. With the addition of both low- and high-molecular-weight PMMA homopolymers, the cylindrical domain sizes increased although it was less obvious for the lower molecular weight homopolymer. In contrast to the homopolymer, adding the short chain diblock copolymer resulted in a decrease in the cylindrical domain size, which was ascribed to the reduction of the interfacial tension and increase in the stretching energy.  相似文献   

8.
Poly-4′-acetylacrylophenone (P4AcAP) and its copolymers with styrene (4AcAP/S) and methyl methacrylate (4AcAP/MMA) were prepared. Ultraviolet (UV) spectra of these polymers show an absorption band at 29,500 cm?1 (? = 270) of n-π* character. The low temperature emission spectra of films of copolymers studied exhibit a less resolved vibrational structure and are bathochromically shifted with respect to those of polyacrylophenone and its styrene and methyl methacrylate copolymers. The emission decay is slightly nonexponential and has a lifetime of about 0.02 sec. Quantum yields of main chain scission in solution with 366-nm radiation are of the same order as those of the unsubstituted polyacrylophenone. Substitution by a strong electron-accepting group, in comparison with polyacrylophenone, influences the value of the quantum yield only a little but prolongs the lifetime of the lowest triplet state. This is also evident in an increase in the Stern–Volmer constant in passing from polyacrylophenone–naphthalene in benzene (68 mole?1) to P4AcAP–naphthalene in dioxane (380 mole?1). With biphenyl as a triplet quencher, the Stern–Volmer constants are low because of back transfer:  相似文献   

9.
研究了以双硫酯为链转移剂进行的均聚和嵌段共聚物的合成 .首先合成大分子链转移剂 ,得到分子量可控、多分散性系数较小的均聚物PMMA、PBMA、PEMA、PEA、PBA、PMA、PSt,多分散性系数一般小于 1 30 .在相同的条件下 ,甲基丙烯酸酯类的聚合速度最快 ,苯乙烯其次 ,丙烯酸酯类最慢 .用末端带有双硫酯基团的PSt、PBMA、PBA为链转移剂 ,加入多种第二单体聚合得到实测分子量与理论分子量接近 ,且多分散性系数较小的两嵌段聚合物 .在链转移剂和引发剂的比例为 3∶1~ 6∶1的范围内 ,聚苯乙烯同样可以作为第一嵌段得到和其它酯类单体的两嵌段聚合物 .1 H NMR方法证明了聚合物的末端带有双硫酯基团 .嵌段聚合时必须加入微量的自由基引发剂以形成大分子自由基 ,达到较好的控制聚合效果  相似文献   

10.
We synthesized a novel photoresponsive monomer, silicon‐containing azo monomer with paired mesogens in the side chain, by reacting 3‐methacryloxypropylmethyldichlorosilane with 2‐[2‐(4‐cyano‐azobenzene‐4′‐oxy)ethylene‐oxy]ethyl alcohol, a mesogenic group. Corresponding homopolymer and copolymers with methyl methacrylate were generated via radical polymerization with AIBN as a radical initiator. Investigations of their thermal properties and optical textures confirmed the monomer and the homopolymer have smectic structures. Homo‐ and copolymer films showed high potential as reversible data recording media via photoinduced alignment of azobenzene groups with irradiation of a linearly or circularly polarized light. Out of all the samples, the copolymer films with high azo dye contents showed the best resolution in the recorded data as well as the fastest response to a pump beam due to large optical birefringence induced in a write‐in process. Strong dependence of the stability of the data stored in the films on the glass transition temperature of the polymers was also observed. In addition, high‐quality holographic grating patterns were inscribed even on the copolymer film with azo molar content of only 7.0% using a modified two‐wave mixing technique. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6734–6745, 2008  相似文献   

11.
The surface properties of three undecyl oxazoline homopolymers and two phenyl/undecyl oxazoline block copolymers (as comparison) were studied. After coating on glass slides and annealing, all films had a low critical surface energy of 21 dynes/cm. Water contact angles were higher than 107° for the most hydrophobic films. The deduction that the polymer surfaces contained close-packed methyl groups was further confirmed by electron spectroscopy chemical analysis (ESCA) angle profiling on an annealed undecyl oxazoline homopolymer film. A model was developed for the variation of elemental ratios as a function of photoelectron take-off angle. This verified that the polymer films had the polymer backbones parallel to the surface with the undecyl tails oriented toward the surface. When these block and homopolymers were coated on copy paper and glass slides, the peel strengths of pressure-sensitive adhesives with these surfaces were very low for short dwell times at room temperature. At long dwell times or at elevated temperatures, the peel strengths remained low for the homopolymers but increased greatly for the block copolymers to values higher than those in the tape on glass. After 24 h at 70°C, ESCA analysis showed that the adhesive diffused into the phenyl block domains of the diblock copolymer, generating high peel strength and cohesive failure. However, under the same annealing conditions, the triblock copolymer showed adhesive failure while peel strength increased. ESCA analysis showed very litle diffusion of the adhesive into the triblock copolymer. The homopolymers were stable toward vinyl acetate type adhesives even at elevated temperature; they were abhesive up to 100°C with no interdiffusion.  相似文献   

12.
For studying the photochemistry of carbonyl chromophores in the side-chain, methacrylic esters of para-acylated 2-phenoxyethanols (CH2 = C(CH3) · CO · O · CH2 · CH2O · C6H4 · CO · R), soluble copolymers with styrene and soluble homopolymers were prepared. Comparison of low temperature emission spectra of model compounds, homopolymers and copolymers doped in polystyrene film indicated some interaction between the excited and the ground state structural units in homopolymers. Quantum yield of main chain scission of copolymers of styrene with monomers 1–3 (R = CH3, C2H5, C6H5) at 313 nm radiation in benzene were about 10?4; the cross-linking was the main reaction for copolymer styrene/monomer 4 (R = C6H5CH2). On exposure of copolymers styrene/monomers 1–4 and polystyrene doped with model compounds in film to 313 nm radiation in air, accelerated photo-oxidation occurs as well as cross-linking. Only chromophores of monomers 3 and 4 were effective as sensitizers of photochemical addition of maleic anhydride to benzene by radiation with γ > 340 nm. The difference in the efficiency between model compounds and copolymers on the one hand and a homopolymer on the other hand is due to self-quenching.  相似文献   

13.
Star homopolymers of some vinyl monomers such as methyl methacrylate, n‐butyl methacrylate and styrene (MMA, nBMA, St.) were prepared by using a N,N,N′N′‐tetramethylethylenediamine ligand/CuBr catalytic system via atom transfer radical polymerization (ATRP). A three armed benzene based core was successfully used as initiator. Low polydispersities and regular molecular weight values were obtained in most cases, especially at low conversions. MMA and BMA showed comparable behavior where controlled and true ATRP was observed even at high conversions. However, styrene monomer recorded irregular high polydispersities at high conversions in spite of the relatively low molecular weight values. Some block copolymers were obtained using MMA homopolymer as macroinitiator with the same strategy of ATRP. 1H‐NMR confirmed the structures of the resulting polymers. Transmission electron microscopy (TEM) proved the nano‐structure of the star polymers. The thermal behavior of the MMA star homo and copolymers was studied. The effect of the star shape on thermal behavior was very clear with respect to the linear ones.  相似文献   

14.
Poly-p-ethylacrylophenone (PPEtAP) and poly-p-chloroacrylophenone (PPClAP) and their copolymers with styrene (PEtAP/S) and (PClAP/S) and with methyl methacrylate (PEtAP/MMA) and (PClAP/MMA) were prepared. Quantum yields of main-chain scissions at 366 nm at room temperature in benzene solution are of the same order as those of the unsubstituted polyacrylophenone and its copolymers. Substitution with chlorine and ethyl group in the para position compared to the unsubstituted polyacrylophenone and its copolymers leads to an increase of the lifetime for the n–π* excited triplet state, as is evident from the measured quenching constants of photolysis. The low-temperature emission spectra of the copolymers are similar to the spectra of the model compounds in a polymer film. For the homopolymer, however, the character of the emission spectrum changes considerably.  相似文献   

15.
A novel vinyl‐hydantoin monomer, 3‐(4′‐vinylbenzyl)‐5,5‐dimethylhydantoin, was synthesized in a good yield and was fully characterized with Fourier transform infrared (FTIR) and 1H NMR spectra. Its homopolymer and copolymers with several common acrylic and vinyl monomers, such as vinyl acetate, acrylonitrile, and methyl methacrylate, were readily prepared under mild conditions. The polymers were characterized with FTIR and 1H NMR, and their thermal properties were analyzed with differential scanning calorimetry studies. The halogenated products of the corresponding copolymers exhibited potent antibacterial properties against Escherichia coli, and the antibacterial properties were durable and regenerable. The structure–property relationships of the polymers were further discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3348–3355, 2001  相似文献   

16.
Poly[(2,2-dimethyl-1,3-dioxolan-4-yl)methyl methacrylate)] [poly(solketal methacrylate) (PSMA)] was synthesized by free radical polymerization. By partial hydrolysis of the acetal group, random copolymers of SMA with 2,3-dihydroxypropyl methacrylate (DHPMA) were synthesized whereas complete cleavage lead to poly(2,3-dihydroxypropyl methacrylate) (PDHPMA). The copolymer composition was determined by 1H NMR spectroscopy. FTIR spectroscopy indicates the synthesis of random copolymers with different degrees of hydrogen bonding as measured by a shift of the OH vibration bands. The glass transition temperature of the random copolymers increases linearly with increasing DHPMA content, resulting in a positive deviation from the Fox equation. The thermal degradation of both homopolymers and their random copolymers has been studied. Finally, the solution behaviour of the copolymers and PDHPMA in water studied by dynamic light scattering showed a strong tendency of the polymer chains to form clusters in the size range of 15-62 nm. The size and the kind of associating interactions within the clusters strongly depend on the copolymer composition.  相似文献   

17.
Mechanochemistry can lead to the degradation of the properties of covalent macromolecules. In recent years, numerous functional materials have been developed based on block copolymers (BCPs), however, like homopolymers, their chains could undergo mechanochemical damage during processing, which could have crucial impact on their performance. To investigate the mechanochemical response of BCPs, multiple polymers comprising different ratios of butyl acrylate and methyl methacrylate were prepared with similar degree of polymerization and stressed in solution via ultrasonication. Interestingly, all BCPs, regardless of the amount of the methacrylate monomer, presented a mechanochemistry rate constant similar to that of the methacrylate homopolymer, while a random copolymer reacted like the acrylate homopolymer. Size-exclusion chromatography showed that, in addition to the typical main peak shift towards higher retention times, a different daughter fragment was produced indicating a secondary selective scission site, situated around the covalent connection between the two blocks. Molecular dynamics modeling using acrylate and methacrylate oligomers were carried out and indicated that dynamic phase separation occurs even in a good solvent. Such non-random conformations can explain the faster polymer mechanochemistry. Moreover, the dynamic model for end-to-end chain overstretching supports bond scission which is not necessarily chain-centered.  相似文献   

18.
Graft copolymers prepared by mastication of PVC in the presence of styrene or of a styrene/ methyl methacrylate mixture, have been studied by thermogravimetry, estimation of hydrogen chloride, thermal volatilization analysis, and flash pyrolysis/g.l.c. The degradation behaviour of PVC/ polystyrene mixtures, vinyl chloride/styrene random copolymers, a random copolymer of methyl methacrylate and styrene, and PVC/poly-α-methylstyrene mixtures has also been studied. The graft copolymers resemble the PVC/methacrylate graft copolymers previously studied in showing retardation of the dehydrochlorination reaction, but contrast with them in yielding chain fragments but no monomer during HCl production. Some stabilization of the second component at higher temperatures is also found. PVC/polystyrene mixtures behave in the same way as the corresponding graft copolymers, but vinyl chloride/styrene copolymers show reduced stability towards both dehydrochlorination and monomer production compared with the homopolymers. PVC/poly-α-methylstyrene mixtures yield some monomer concurrently with HCl loss, and display marked retardation of the latter reaction. Stabilization of the second polymer at higher temperatures is again observed. Many of these results add further strong support to the view that chlorine atoms are involved as chain carriers in the thermal dehydrochlorination of PVC.  相似文献   

19.
A protocol for using neutron reflectivity to monitor the dynamic properties of a copolymer in a homopolymer matrix is described. This technique may be used to monitor a broad range of systems, as long as the copolymer and homopolymer form a miscible blend at low copolymer concentrations. Moreover, with knowledge of the Flory–Huggins interaction parameter between the copolymer and homopolymer, the molecular dynamic parameters of the copolymer, such as the tracer diffusion coefficient, segmental friction factor, and longest relaxation time, can be quantitatively determined. This technique is demonstrated by the determination of these parameters for a series of styrene/methyl methacrylate alternating copolymers dispersed in a matrix of deuterated poly(methyl methacrylate). Interestingly, the segmental friction factor of these alternating copolymers is significantly different from that of similar diblock copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3235–3247, 2004  相似文献   

20.
Polymeric pendant Ru(bpy)_3~(2+) complexes were prepared from homopolymer and copolymers of 4-methyl-4'-vinyl-2,2'-bipyridine (Vbpy). Vbpy was prepared from 4-methylpyridine. The comonomers were styrene (St), acrylic acid (AA), N-vinylpyrrolidone (Pyr), 4-vinylpyridine (Vpy), methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (HEMA), acrylonitrile (AN) and N-ethyl-4-vinylpyridium bromide (EQ-Vpy). The fraction of the pendant Ru(bpy)_3~(2+) repeating unit in the polymeric complex was 0.022 to 0.052. Absorption maximum, molar extinction coefficient, emission maximum and relative emission intensity of the polymeric complexes were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号