首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The system KSi‐KSiH3 stores 4.3 wt % of hydrogen and shows a very good reversibility at mild conditions of 0.1 MPa hydrogen pressure and 414 K. 1 We followed the reaction pathways of the hydrogenation reactions of KSi and its higher homologue CsSi by in situ methods in order to check for possible intermediate hydrides. In situ diffraction at temperatures up to 500 K and gas pressures up to 5.0 MPa hydrogen gas for X‐ray and deuterium gas for neutron reveal that both KSi and CsSi react in one step to the hydrides KSiH3 and CsSiH3 and the respective deuterides. Neither do the Zintl phases dissolve hydrogen (deuterium), nor do the hydrides (deuterides) show any signs for non‐stoichiometry, i.e. all phases involved in the formation are line phases. Heating to temperatures above 500 K shows that at 5.0 MPa hydrogen pressure only the reaction 2CsSi + 3H2 = 2CsSiH3 is reversible. Under these conditions, KSiH3 decomposes to a clathrate and potassium hydride according to 46KSiH3 = K8Si46 + 38KH + 50H2.  相似文献   

2.
The quaternary aluminium hydrides SrAlGeH and BaAlGeH were synthesized from either hydrogenating the intermetallic AlB2-type precursors SrAlGe and BaAlGe or reacting SrH2 with a mixture of Al and Ge in the presence of pressurized hydrogen. Their structures were characterized by X-ray and neutron powder diffraction of the corresponding deuterides. The compounds crystallize with the trigonal SrAlSiH structure type (space group P3m1, Z = 1, a = 4.2435(2) and 4.3450(2) Å, c = 4.9710(3) and 5.2130(4) Å for SrAlGeH and BaAlGeH, respectively) and feature a two-dimensional polyanion [AlGeH]2− which represents a corrugated hexagon layer built from three-bonded Al and Ge atoms. H is terminally attached to Al. Polyanions [AlGeH]2− are electron precise and, according to electronic structure calculations, the quaternary hydrides display band gaps with sizes between 0.7 and 0.8 eV. Infrared and inelastic neutron scattering spectroscopy show Al–H stretching and bending mode frequencies at around 1250 and 870 cm−1, respectively. SrAlGeH and BaAlGeH are thermally stable up to at least 500 °C. When exposed to air the hydrides decompose rapidly to amorphous, orange colored materials.  相似文献   

3.
The hydrogenation of the Zintl phase NdGa was studied by in situ neutron powder diffraction. We find a compositional range of 0.1 < x < 0.8 in NdGaH1+x. Hydrogen atoms are located in two different positions, in HNd4 tetrahedra, and close to the polyanionic chains. For the latter, the Ga–H distance in NdGaH1.66 is quite long (ca. 200 pm) with a trigonal bipyramidal Nd3Ga2 surrounding of hydrogen atoms. Hydrogen poor NdGaH<1 phases as known for similar systems were not observed. The changing hydrogen content shows no measureable effect on the unit cell volume, but on lattice parameter ratios. Superstructures occur for 0.53 < x < 0.66 and 0.73 < x < 0.8, leading to a doubling or tripling of the lattice parameter a. They are probably caused by partial hydrogen ordering. The threefold superstructure contains a 1[(Ga–H–Ga–H–Ga)6–] moiety with hydrogen bridging two gallium chains.  相似文献   

4.
The influence of substitution Pr for La and Ni for Co on hydrogen storage properties of Pr1-xLaxMgNi4-yCoy (х = 0; 0.5, у = 0–3) alloys were studied. The existences of solid solutions have been found. It is shown that the synthesized alloys absorb hydrogen at room temperature and hydrogen pressure 0.1–10 bar. For some of the studied compounds, the formation of hydrides with cubic and orthorhombic structures was found. Hydrogen capacity for Pr1-xLaxMgNi4-yCoy alloys increases with Co content increasing and reaches 6.6 H/f.u. for PrMgNi2Co2. For electrochemical hydrogenation different trend was observed. With increasing of Co content discharge capacity slightly increases only to y = 0.5, and after y > 0.5, decreases. Highest discharge capacity is equal to 305 mА∙h/g for Pr0.5La0.5MgNi3.5Co0.5, and 268 mА∙h/g for PrMgNi3.5Co0.5 at current densities 50 mА/g and 200 mA/g, respectively. Influence of Co and number of activation cycles on HRD value of PrMgNi4-yCoy alloys was investigated. Additionally, obtained results of the electrochemical properties were compared with related compounds.  相似文献   

5.
The polyanionic compound BaLaSi2 featuring cis-trans silicon chains takes up hydrogen to form a hydride BaLaSi2H0.80. The crystal structure of the parent intermetallic compound is largely retained upon hydrogenation with the same space group type, a unit cell volume increase of 3.29 % and very similar atomic positions in the hydride. Hydrogen could be located in the crystal structure by neutron diffraction on the deuteride. Deuterium atoms occupy a tetrahedral Ba3La interstitial with 40.6(2) % occupation (Cmcm, a = 464.43(4) pm, b = 1526.7(1) pm, c = 676.30(6) pm). BaLaSi2H0.80 is thus an interstitial Zintl phase hydride like LaSiH1–x, but unlike BaSiH2–x does not feature any covalent Si–H bonds. Si–Si distances within the polyanion increase upon hydrogenation from 240.1(6) and 242.9(5) pm to 244.7(2) pm and 245.5(2) pm. This is probably due to oxidation of the polyanion by hydrogen, which leads to the formation of hydride ions and the depopulation of the polyanion's antibonding π* states. Interatomic Ba–D [260.9(4) pm, 295.7(5) pm] and La–D distances [241.2(7) pm] are in the typical range of ionic hydrides.  相似文献   

6.
The flexibility of the Sn‐Sn bond is acknowledged by the structural variety of compounds which are formed between tin and electropositive metals as minority components. As demonstrated for Na/Sn, already in the case of simple, binary systems a plethora of different structural motifs becomes obvious. Although the phase diagram of sodium and tin has been studied extensively for many years, the series of sodium stannides could be complemented by several new representatives during the last few years.  相似文献   

7.
Vibrational spectra of the compounds M4E4 (M = K, Rb, Cs; E = Ge, Sn) and of β‐Na4Sn4 with the cluster anions [E4]4? were analysed based on the point group of isolated tetrahedranide units. The lower individual symmetry of the anions in the real structure being more patterned and complex primarily affects the spectra of the tetrahedro‐tetragermanides. ν3(F2) clearly splits both in Raman and IR and in the case of K4Sn4 only in IR. Rb4Sn4 and Cs4Sn4 exhibit very simple spectra with three bands in Raman and one band in IR. The breathing mode ν1(A1) for the quasi isolated [E4]4? cluster appears only in the Raman spectrum and is hardly influenced by the structural environment and by the nature of the alkali metal cations: ν1(A1) = 274 cm?1 ([Ge4]4?) and 183‐187 cm?1 ([Sn4]4?), respectively. The calculated valence force constants fd(E–E) are: [Ge4]4? : fd = 0.89 Ncm?1 ( K ), 0.87 Ncm?1 ( Rb ), 0.86 Ncm?1 ( Cs ) and [Sn4]4? : 0.67 Ncm?1 ( Na ), 0.66 Ncm?1 ( K ), 0.67 Ncm?1 ( Rb ), 0.68 Ncm?1 ( Cs ). Both, the frequencies and the force constants fit well into the range previously reported.  相似文献   

8.
Palladium rich intermetallic compounds of aluminium, gallium and indium have been studied before and after hydrogenation by powder X-ray diffraction and during hydrogenation by in situ thermal analysis (DSC) at hydrogen gas pressures up to 39 MPa and temperatures up to 700 K. Very weak DSC signals and small unit cell increases of below 1% for AlPd2, AlPd3, GaPd2, Ga5Pd13, In3Pd5, and InPd2 suggest negligible hydrogen uptake. In contrast, for both tetragonal modifications of InPd3 (ZrAl3 and TiAl3 type), heating to 523 K at 2 MPa hydrogen pressure leads to a rearrangement of the intermetallic structure to a cubic AuCu3 type with an increase in unit cell volume per formula unit by 3.6-3.9%. Gravimetric analysis suggests a composition InPd3H≈0.8 for the hydrogenation product. Very similar behaviour is found for the deuteration of InPd3.  相似文献   

9.
Pnictides α‐Ba5P4 and KBa4P5 were prepared by melting the elements. The α‐Ba5P4 compound crystallizes in the orthorhombic system (Sm5Ge4‐type), space group Pnma, Z = 4, a = 8.330(3), b = 16.503(3), c = 8.405(2)Å, it contains two anionic species : P24— dumbbells and P3—. The KBa4P5 compound crystallizes in the tetragonal system, space group P43212, Z = 4, a = 8.559(1), c = 16.102(2)Å, it contains trimers P35— and dumbbells P24—. The crystal structures were solved from single crystal X‐ray data and refined by full‐matrix least‐squares to agreement factors R1 = 0.047 and 0.038, respectively. Using ionic charges, α‐Ba5P4 is formulated as [5Ba2+, 2P3—, P24—] and KBa4P5 as [K+, 4Ba2+, P24—, P35—]. The level of oligomerisation in these structures depends upon the overall valence electron content, bonding within the anionic oligomers has been analyzed on the basis of EHMO calculations and compared to classical or hypervalent bonding in other phosphide compounds.  相似文献   

10.
11.
The magnetic properties of the RY2Ni9 ternary alloys (R=La, Ce) and their hydrides have been investigated. Both LaY2Ni9 and CeY2Ni9 are ferromagnets with TC=15 and 92 K, respectively. Upon H absorption LaY2Ni9H12 becomes a Pauli paramagnet, whereas CeY2Ni9H8 remains ferromagnetic with an additional magnetic contribution of trivalent Ce atoms belonging to the MgZn2 units occupied by hydrogen atoms.  相似文献   

12.
Two new Zintl compounds A10LaCdSb9 (A=Ca, Yb), namely, Ca9.81(1)La0.97(1)Cd1.23(1)Sb9 and Yb9.78(1)La0.97(1)Cd1.24(1)Sb9, have been designed and synthesized by applying the Zintl concept. Although both compounds are isoelectronic with their Ca11InSb9 and Yb11InSb9 analogues, they crystallize in a new structure type with the orthorhombic space group Ibam (No.72) and feature very complex anion structures, which are composed of unique [Cd2Sb6]12? clusters, dumbbell‐shaped [Sb2]4? dimers, and isolated [Sb]3? anions. For Yb9.78(1)La0.97(1)Cd1.24(1)Sb9, an extremely low lattice thermal conductivity of 0.29 W m?1 K?1 was observed at 875 K, which almost approaches the lowest reported limit of nonglassy or nonionically conducting bulk materials. According to thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses, both compounds show very good thermal stability and no melting or phase transition processes were found below 1173 K. Although related thermoelectric property studies on Yb9.78(1)La0.97(1)Cd1.24(1)Sb9 only present a maximum ZT of 0.11 at 920 K, owing to its low Seebeck coefficients, these materials are still very promising for their high temperature stability and low thermal conductivity. Furthermore, as mixed cations exist with different charges, it makes this system very flexible in tuning the related electrical properties.  相似文献   

13.
14.
Experimental studies on compounds of alkali and alkaline earth metals with semi- and metametals have considerably broadened the basis for a discussion of the transition from metallic to ionic bonding. Current interest is focused mainly upon the elucidation of the principles governing the structure of such compounds which are subject to a wide range of variation within this class of materials. A new definition of the term Zintl phase is proposed after consideration of available findings.  相似文献   

15.
The creation of thermoelectric materials for waste heat recovery and direct solar energy conversion is a challenge that forces the development of compounds that combine appreciable thermoelectric figure‐of‐merit with high thermal and chemical stability. Here we propose a new candidate for high‐temperature thermoelectric materials, the type‐III Si172?xPxTey cationic clathrate, in which the framework is composed of partially ordered silicon and phosphorus atoms, whereas tellurium atoms occupy guest positions. We show that the utmost stability of this clathrate (up to 1500 K) in air is ensured by the formation of a nanosized layer of phosphorus‐doped silica on the surface, which prevents further oxidation and degradation. As‐cast (non‐optimized) Si‐P‐Te clathrates display rather high values of the thermoelectric figure‐of‐merit (ZT=0.24–0.36) in the temperature range of 700–1100 K. These ZT values are comparable to the best values achieved for the properly doped transition‐metal‐oxide materials. The methods of the thermoelectric efficiency optimization are discussed.  相似文献   

16.
The Zintl phases M4Si4 with M = Na, K, Rb, Cs, and Ba2Si4 feature a common structural unit, the Si44– anion. The coordination of the anions by the cations varies significantly. This allows a systematic investigation of the bonding situation of the anions by 29Si NMR spectroscopy. The compounds were characterized by powder X‐ray diffraction, differential thermal analysis, magnetic susceptibility measurements, 23Na, 29Si, 87Rb, 133Cs NMR spectroscopy, and quantum mechanical calculation of the NMR coupling parameter. The chemical bonding was investigated by quantum mechanical calculations of the electron localizability indicator (ELI). Synthesis of the compounds results for all of them in single phase material. A systematic increase of the isotropic 29Si NMR signal shift with increasing atomic number of the cations is observed by NMR experiments and quantum mechanical calculation of the NMR coupling parameter. The agreement of experimental and theoretical results is very good allowing an unambiguous assignment of the NMR signals to the atomic sites. Quantum mechanical modelling of the NMR shift parameter indicates a dominant influence of the cations on the isotropic 29Si NMR signal shift. In contrast to this a negligible influence of the geometry of the anions on the NMR signal shift is obtained by these model calculations. The origin of the systematic variation of the isotropic NMR signal shift is not yet clear although an influence of the charge transfer estimated by calculation using the QTAIM approach is indicated.  相似文献   

17.
The interplay of electronic and nuclear degrees of freedom in semiconductor hybrid organic–inorganic perovskites determines many of their fundamental photophysical properties. For instance, charge carriers are dressed with phonons, that is, form polarons, and combination modes composed of strongly mixed localized vibrations and delocalized phonons can provide pathways for electronic energy relaxation and dissipation. Mixing of the different types of nuclear motion in vibrational combination modes requires their strong coupling. The direct measurement of coupling between the high‐frequency N?H stretch modes of the organic methylammonium and formamidinium ions and low‐frequency Pb?I phonon modes of the inorganic sub‐lattice in hybrid organic–inorganic perovskites is presented. The results reveal direct and substantial coupling between the non‐covalently interacting organic and inorganic sub‐lattices.  相似文献   

18.
19.
Three new compounds—Sr7.04(2)Ga1.94(2)Sb6, Ba7.02(3)Ga1.98(3)Sb6 and Eu7.04(3)Ga1.90(3)Sb6—have been synthesized from reactions of the corresponding elements using gallium as a metal flux. Their crystal structures (space group I4¯3d (No. 220), Z=2 with unit cell parameters: a=9.9147(9) Å for the Sr-compound; a=10.3190(9) Å for the Ba-compound; and a=9.7866(8) Å for the Eu-compound) have been established by single-crystal X-ray diffraction. The structures are best described as Ga-stabilized derivatives of the hypothetical Sr4Sb3, Ba4Sb3 and Eu4Sb3 phases with the cubic Th3P4 type. Such an inclusion of interstitial Ga atoms in this atomic arrangement results in the formation of isolated [Ga2Sb6]14− fragments, isoelectronic and isostructural with the [Sn2Te6]6− anions in the K3SnTe3 type, and allows for the attainment of a charge-balanced electron count. In that sense, the Sr4Sb3, Ba4Sb3 and Eu4Sb3 binaries, which are expected to be electron-deficient and are currently unknown, can be “turned” into Sr7Ga2Sb6, Ba7Ga2Sb6 and Eu7Ga2Sb6, whose structures are readily rationalized following the Zintl concept.  相似文献   

20.
Fully relativistic four-component energy-adjusted pseudopotentials and corresponding valence basis sets have been derived for the alkaline atoms Li through Cs, treating them as one-valence electron systems. Core-valence correlation effects are accounted for by a core-polarization potential, deviations of the core-nucleus repulsion from a point charge model by a suitable correction. The results of Dirac-Hartree-Fock and configuration interaction calculations are presented for atomic properties not used in the pseudopotential adjustment, i.e. electron affinities and dipole polarizabilities, as well as for the spectroscopic constants of the ground states of the alkaline monohydrides. The analytic form of the cut-off function for the electric field in the core-polarization term and its effects on atomic and molecular properties is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号