首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new sensitizer MC119 has been synthesized and the solar cell constructed with 0.25 cm(2) active area photoelectrode in combination with an electrolyte composed of 0.6 M dimethylpropyl-imidazolium iodide (DMPII), 0.05 M I(2), 0.5 M TBP and 0.1 M LiI in acetonitrile achieved a solar to electric energy conversion efficiency (η) of 8.36% under Air Mass (AM) 1.5 sunlight, while the reference N719 sensitized solar cell exhibited η-value of 7.2%.  相似文献   

2.
The development of ruthenium dye-sensitizers with highly effective metal-to-ligand charge transfer (MLCT) characteristics and narrowed transition energy gaps are essential for the new generation of dye-sensitized solar cells. Here, we designed a novel anchoring ligand by inserting the cyanovinyl-branches inside the anchoring ligands of selected highly efficient dye-sensitizers and studied their intrinsic optical properties using theoretical methods. Our calculated results show that the designed ruthenium dyes provide good performances as sensitizers compared to the selected efficient dyes, because of their red-shift in the UV–visible absorption spectra with an increase in the absorption intensity, smaller energy gaps and thereby enhancing MLCT transitions. We found that, the designed anchoring ligand acts as an efficient “electron-acceptor” which boosts electron-transfer from a –NCS ligand to this ligand via a Ru-bridge, thus providing a way to lower the transition energy gap and enhance the MLCT transitions.  相似文献   

3.
In the present work we investigate the effect of TiCl4 treatments on the photoconversion efficiency of TiO2 arrays used in dye sensitized solar cell. The results clearly show that by an appropriate treatment the decoration of the TiO2 nanotube arrays with TiO2 nanocrystallites of a typical size of 3 nm can be achieved. These particles can be converted to mixture of anatase and rutile phase by annealing in air. This decoration of the TiO2 nanotubes leads to a significantly higher specific dye loading and, for certain annealing treatments, to a doubling of the solar cell efficiency (in our case from 1.9% to 3.8% of AM 1.5 conditions) can be achieved.  相似文献   

4.
Solar cells based on swift self-assembled sensitizer bis(tetrabutylammonium)-cis-di(thiocyanato)-N,N'-bis(4-carboxylato-4'-carboxylic acid-2,2'-bipyridine)ruthenium(II) (N719) on double layers of 12 + 4 microm thick nanocrystalline TiO2 films exhibit the incident monochromatic photon-to-current conversion efficiency (IPCE) 90% and show a short circuit current density of 17 mA cm(-2), 750 mV open circuit potential and 0.72 fill factor yielding power conversion efficiencies over 9.18% under AM 1.5 sun. For the first time highest power conversion efficiencies are obtained for dye sensitized solar cells using a swift self-assembled procedure.  相似文献   

5.
The short circuit current of dye sensitised solar cells increased significantly by the simple addition of polyester hydroxyl acetylene bis(hydroxymethyl)propanoic acid dendrons on TiO(2) nanoparticles, resulting in a very high overall energy conversion efficiency.  相似文献   

6.
本文报道了水热法可控合成二氧化钛纳米晶及其在染料敏化太阳能电池中的应用.选择合适的有机碱胶化剂,能很好地控制二氧化钛纳米晶的生长,形成不同形貌和粒径的锐钛矿型二氧化钛纳米晶颗粒.染料敏化太阳能电池光电性能测试结果表明,以四乙基氢氧化铵为胶化剂合成的边长为8~13nm的正方形二氧化钛纳米晶构成的光阳极光电性能优于以四丁基氢氧化铵为胶化剂合成的边长为7~10nm的正方形二氧化钛纳米晶以及长18~35nm,宽10~18nm的长方形二氧化钛纳米晶构成的光阳极.用较高浓度的四甲基氢氧化铵胶化剂能合成球形或椭球形亚微米级二氧化钛颗粒,以其为散射中心在光阳极中构建散射层,染料敏化太阳能电池的光电转换效率能由6.77%提高到8.18%.  相似文献   

7.
Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots   总被引:2,自引:0,他引:2  
We report nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. InAs quantum dots of different sizes were synthesized and incorporated in solar cell devices. Efficient charge transfer from InAs quantum dots to TiO2 particles was achieved without deliberate modification of the quantum dot capping layer. A power conversion efficiency of about 1.7% under 5 mW/cm2 was achieved; this is relatively high for a nanocrystalline metal oxide solar cell sensitized with presynthesized quantum dots, but this efficiency could only be achieved at low light intensity. At one sun, the efficiency decreased to 0.3%. The devices are stable for at least weeks under room light in air.  相似文献   

8.
Zinc oxide (ZnO) nanorods of different structures have been grown on indium-doped tin oxide substrates by using TiO2 as seed layer. The ZnO nanorods have been prepared using TiO2 seed layers annealed at different temperatures via a simple sol–gel method. The X-ray diffraction result indicates that the prepared samples are of wurtzite structure. Dye sensitized solar cells have been fabricated using the prepared ZnO nanorods. The open circuit voltage, short circuit current density, fill factor, and power conversion efficiency of the ZnO nanorod based dye sensitized solar cells prepared using TiO2 seed layers annealed at different temperatures have been determined. The improvement in power conversion efficiency may be due to the flower like structured ZnO nanorods with smaller diameter and large specific surface area which paves way for the efficient electron transfer in hybrid solar cells.  相似文献   

9.
The incorporation of nano-crystalline semiconductors with novel kinds of ordered microstructure is a very important area of research in the field of dye sensitized solar cells. A sol–gel method involving hydrolysis of titanium isopropoxide was used to form TiO2 nanoparticles on the surface of SiO2 spheres. In this process, 1, 5, or 10 wt% of SnCl2.2H2O was added to the sol–gel solution. To prepare TiO2/SnO2 nanoparticles with a half hollow sphere structure, SiO2 was removed with NaOH solution. The crystal phase, crystal shape, and surface properties of the metal oxide nanocrystals were studied by x-ray diffraction and scanning electron microscopy. The photovoltaic performance of the TiO2/SnO2 nanoparticles with half hollow sphere structures was measured. The dye sensitized solar cell using nanoporous TiO2 as electrode materials exhibits an overall conversion efficiency of 7.36% with a light intensity of 100 mW/cm2. The short circuit photocurrent (Isc), open circuit photovoltage (Voc), and conversion efficiency (η) of these solar cells were improved over conventional materials.  相似文献   

10.
Cyclometalated ruthenium complexes of [Ru(C--arrow--N) (N--N--N)] configuration are a promising new class of molecular sensitizers for dye-sensitized solar cells, as a result of their broad and red-shifted visible absorption in comparison to the analogous [Ru(N--N--N)2] type coordinative complexes.  相似文献   

11.
Ruthenocycle bis(4,4′-dicarboxy-2,2′-bipyridine)(2-phenylpyridine-2C,N)ruthenium(II) hexafluorophosphate was used as a sensitizer in a dye-sensitized solar cell (DSSC) based on nanocrystalline TiO2, which was applied onto a conducting substrate. Its electrochemical and spectral characteristics were studied. It was found that, when the DSSC was illuminated with visible light of power 35 mW/cm2, the short-circuit current density was 11.6 mA cm?2 and the open-circuit voltage was 0.49 V. The efficiency (η) of DSSC at a fill factor of 45% was 7.1%. Using the method of modulation spectroscopy of photocurrents and photopotentials, the life time and transit time of electrons were found to be 7 and 5 ms, respectively, and the diffusion coefficient of electrons was found to be 10?5 cm2 s?1. Comparing the life and transit times of electron, it was concluded that the photogenerated electrons had time to reach the conducting substrate during their life time.  相似文献   

12.
A novel donor-π-spacer-acceptor type organic dye (AK01) bearing a phenylenevinylene-conjugated system and a derivative of indoline donor was synthesized for dye-sensitized solar cells. AK01 showed panchromatic TiO(2) sensitization with high overall conversion efficiency of 6.2% under AM 1.5 illumination (100 mW cm(-2)).  相似文献   

13.
Time dependent density functional theory (TD-DFT) calculations have been carried out to study the electronic structure and the optical properties of five coumarin based dyes: C343, NKX-2311, NKX-2586, NKX-2753 and NKX-2593. We have found out that the position and width of the first band in the electronic absorption spectra, the absorption threshold and the LUMO energy with respect to the conduction band edge are key parameters in order to establish some criteria that allow evaluating the efficiency of coumarin derivatives as sensitizers in Dye Sensitized Solar Cells (DSSC). Those criteria predict the efficiency ordering for the coumarin series in good agreement with the experimental evidence. Presumably, they might be used in the design of new efficient organic based DSSC.  相似文献   

14.
A new class of cyclometalated ruthenium complexes, Ru(C^N^N')(N^N'^N')·Cl where N^N'^N' = 4,4',4'-tricarboxy-2,2':6',2'-terpyridine and C^N^N' = substituted 6-phenyl-2,2'-bipyridine, for Dye Sensitized Solar Cells (DSSCs) is proposed. We have investigated the effect of different substituents (R = COOH, thiophen-2-yl, F and OCH(3)) on the ancillary C^N^N' ligand on the photophysical properties and performance of the six different cyclometalated ruthenium complexes in DSSCs. Using an ionic liquid based electrolyte, efficiencies up to η = 3.06% have been attained under 1 sun irradiation. Moreover, the T66 based DSSC exhibited a good stability under 1000 W m(2) light soaking at 60 °C for 24 days, retaining 92.8% of its initial efficiency.  相似文献   

15.
A new bichromophoric dyad based on an alkyl-functionalized aminonaphthalimide as energy-donor chromophore and [Ru(dcbpy)2(acac)]Cl (dcbpy=4,4'-dicarboxybipyridine, acac=acetylacetonato) as energy acceptor and sensitizing chromophore is synthesized. Efficient quenching of the donor-chromophore emission is observed in solution, presumably due to resonant energy transfer. This dyad is then used as a sensitizer in a dye solar cell. By comparing the spectral properties of transparent dye solar cells sensitized with the dyad and [Ru(dcbpy)2(acac)]Cl, it is possible to demonstrate that photons absorbed by the donor moiety also contribute significantly to the generation of current. Instead of using acceptor luminescence as a probe, enhanced photocurrent generation is employed to estimate the energy-transfer efficiency. Fitting theoretical to experimental external quantum efficiency functions gives a value for the energy-transfer efficiency of 85 %. Evaluation of the maximum output power of dye solar cells sensitized with the dyad and [Ru(dcbpy)2(acac)]Cl showed, under selective illumination at the absorption maximum of the donor chromophore, that the introduction of the energy-donor moiety leads to a significant increase in the monochromatic maximum output power under blue illumination. This result demonstrates the usefulness of energy transfer for the generation of current in dye-sensitized solar cells.  相似文献   

16.
A novel ligand 4,4'-bis(carboxyvinyl)-2,2'-bipyridine (L) and its ruthenium(II) complex [Ru(II)L(2)(NCS)(2)] (K8) were synthesized and characterized by analytical, spectroscopic, and electrochemical techniques. The performance of the K8 complex as a charge transfer photosensitizer in nanocrystalline TiO(2) based solar cells was studied. When the K8 complex anchored onto a nanocrystalline TiO(2) film, we achieved very efficient sensitization yielding 77 +/-5% incident photon-to-current efficiencies (IPCE) in the visible region using an electrolyte consisting of 0.6 M methyl-N-butyl imidiazolium iodide, 0.05 M iodine, 0.05 M LiI, and 0.5 M 4-tert-butylpyridine in a 50/50 (v/v) mixture of valeronitrile and acetonitrile. Under standard AM 1.5 sunlight, the complex K8 gave a short circuit photocurrent density of 18 +/- 0.5 mA/cm(2), and the open circuit voltage was 640 +/- 50 mV with fill factor of 0.75 +/- 0.05, corresponding to an overall conversion efficiency of 8.64 +/- 0.5%.  相似文献   

17.
A new cyclometalated ruthenium complex, [Ru(6'-phenyl-4'-thiophen-2-yl-[2,2']bipyridinyl-4-carboxylic acid)(4,4',4'-tricarboxy- 2,2':6',2'-terpyridine)]Cl, for Dye Sensitized Solar Cells (DSSCs) is proposed. We have investigated the use of cuprous iodide (CuI) as an electrolyte additive, which in turn has shown photocurrent enhancements of more than 25% in our dye based cells. Using an ionic liquid based electrolyte, an efficiency of η = 5.7% has been accomplished under 1 sun irradiation. The origin of this photocurrent enhancement upon the CuI addition was studied by means of impedance spectroscopy and cyclic voltammetry under dark conditions. The reason behind such a photocurrent enhancement is attributed to an electrocatalytic effect of the CuI on the regeneration of the oxidized dye. Furthermore, the CuI addition did not affect the recombination processes between the injected electrons and the electrolyte nor the electron lifetime in the semiconductor TiO(2) film, which in turn resulted in no changes in the photovoltage.  相似文献   

18.
A novel heteroleptic ruthenium complex carrying a heteroaromatic-4,4'-pi-conjugated 2,2'-bipyridine [Ru(II)LL'(NCS)(2)] (L = 4,4'-bis[(E)-2-(3,4-ethylenedioxythien-2-yl)vinyl]-2,2'-bipyridine, L' = 4,4'-(dicarboxylic acid)-2,2'-bipyridine) was synthesized and used in dye-sensitized solar cells, yielding photovoltaic efficiencies of 9.1% under standard global AM 1.5 sunlight.  相似文献   

19.
TiO(2) hollow fibers with high surface area were manufactured by a simple synthesis method, using natural cellulose fibers as template. The effective light scattering properties of the hollow fibers, originating from their micron size, were observed by diffuse reflectance spectroscopy. In spite of the micrometric length of the TiO(2) hollow fibers, the walls were highly porous and high surface area (78.2 m(2) g(-1)) was obtained by the BET method. TiO(2) hollow fibers alone and mixed with other TiO(2) pastes were sensitized with CdSe quantum dots (QDs) by Successive Ionic Layer Adsorption and Reaction (SILAR) and integrated as a photoanode in quantum dot sensitized solar cells (QDSCs). High power conversion efficiency was obtained, 3.24% (V(oc) = 503 mV, J(sc) = 11.92 mA cm(-2), FF = 0.54), and a clear correspondence of the cell performance with the photoanode structure was observed. The unique properties of these fibers: high surface area, effective light scattering, hollow structure to facile electrolyte diffusion and the rather high efficiencies obtained here suggest that hollow fibers can be introduced as promising nanostructures to make highly efficient quantum dot sensitized solar cells.  相似文献   

20.
Herein we report the application of supramolecular dyes to control charge recombination between photo-injected electrons and oxidized hole-transporting material, resulting in an enhancement in the performance of dye sensitized solar cell devices based upon such dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号