首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Vapor-phase OH-stretching overtone spectra of 1,3-propanediol and 1,4-butanediol were recorded and compared to the spectra of ethylene glycol to investigate the effect of increased intramolecular hydrogen bond strength on OH-stretching overtone transitions. The spectra were recorded with laser photoacoustic spectroscopy in the second and third OH-stretching overtone regions. The room-temperature spectra of each molecule are dominated by two conformers that show intramolecular hydrogen bonding. Anharmonic oscillator local-mode calculations of the OH-stretching transitions have been performed to aid assignment of the different conformers in the spectra and to illustrate the effect of the intramolecular hydrogen bonding. The hydrogen bond strength increases in the order ethylene glycol, 1,3-propanediol, and 1,4-butanediol. The overtone transitions of the hydrogen-bonded hydroxyl groups are more difficult to observe with increasing intramolecular hydrogen bond strength. We suggest that the bandwidth of these transitions increases with increasing hydrogen bond strength and with increasing overtone and furthermore that these changes are in part responsible for the lack of observed overtone spectra for complexes.  相似文献   

2.
Vapor-phase OH-stretching overtone spectra of methanesulfonic acid and trifluoromethanesulfonic acid were recorded in the Deltav(OH) = 4 and 5 regions using cavity ring-down spectroscopy. We compare these spectra to those of sulfuric acid to consider the effect on vibrational overtone spectra of replacing one of the OH groups with a more or less electronegative group. We complement our experimental work with anharmonic oscillator local mode calculations of the OH-stretching frequencies and intensities. The presence of a weak intramolecular interaction between the hydrogen atom of the OH group and the oxygen atom of the adjacent S=O group in methanesulfonic acid lowers its OH-stretching frequency from what would otherwise be predicted based on the electronegativity of the methyl group.  相似文献   

3.
We have measured the OH-stretching fundamental and overtone spectra of resorcinol and hydroquinone in a supersonic jet using nonresonant ionization detected infrared/near-infrared spectroscopy. Anharmonic oscillator local mode calculations of the OH-stretching frequencies and intensities and Boltzmann populations of the stable rotamers have been calculated at the B3LYP/6-311++G(3df,2pd) level to help interpret the observed spectra. Resorcinol has three stable rotamers and in the recorded second and third OH-stretching overtone spectra there is evidence of two distinguishable rotamers. Hydroquinone has two stable rotamers; however, the OH-stretching oscillators of each rotamer are so similar in nature that even up to the fourth OH-stretching overtone the transitions coincide. These results place a limit on the ability of the jet-cooled overtone spectroscopy technique to distinguish between rotamers.  相似文献   

4.
The room-temperature vibrational overtone spectra of the formic acid isotopomers HCOOH and DCOOH have been recorded in the third and fourth OH-stretching overtone regions with intracavity laser photoacoustic spectroscopy. Resonance coupling between the OH- and CH-stretching vibrations in HCOOH is clearly identified in the fourth overtone region. This is an example of strong coupling across bonds. In the third overtone region, no resonance is observed. Vibrational energies and intensities of the OH- and CH-stretching overtones and combination bands have been calculated with an anharmonic oscillator local mode model. The pure OH-stretching bright state carries almost all the intensity prior to resonance coupling.  相似文献   

5.
In this theoretical study, we simulated the vibrational overtone spectrum of ethylene glycol (EG), 1-3 propanediol (PD), and 1-4 butanediol (BD). Using the local mode model along with the potential energy curve and dipole moment function calculated by B3LYP/6-31+G(d,p) and QCISD/6-311++G(3df,3pd), we obtained the theoretical peak position and integrated absorption coefficient. Furthermore, the vibrational spectra was simulated using a Voigt function using homogeneous and inhomogenous width obtained from quantum chemical calculation methods. Previously, Howard and Kjaergaard recorded the second and third overtone photoacoustic spectra of the three aforementioned alkane diols in the gas phase and observed that the intramolecular hydrogen bonded OH peak becomes difficult to observe as the intramolecular hydrogen bonding strength increased, that is, as the chain length was increased. In this paper we show that the disappearance of the hydrogen-bonded OH peak for the OH stretching overtone excitation for BD is partly due to the increase in homogeneous width due to the increase in the hydrogen bond strength and partly due to the decrease in the relative population of the intramolecular hydrogen-bonded conformers as the chain length is increased. This latter feature is a consequence of the unfavorable strained geometry needed to form the intramolecular hydrogen bond in longer alkane chains.  相似文献   

6.
The gas phase spectra of several vibrational bands of peroxyformic acid (PFA), an atmospheric molecule exhibiting intramolecular hydrogen bonding, are presented. In the fundamental region, Fourier transform infrared (FT-IR) spectroscopy is used to probe the C-O, O-H and C-H stretching vibrations, while in the region of the first and second OH-stretching overtones (2ν(OH) and 3ν(OH)) photoacoustic spectroscopy is used. Integrated absorption cross sections for the PFA vibrational bands are determined by comparing their respective peak areas with that for the OH-stretching bands of n-propanol for which the absorption cross section is known. The measured integrated intensities of the OH stretching bands are then compared with a local mode model using a one-dimensional dipole moment function in conjunction with the OH stretching potential computed at both the MP2/aug-cc-pVDZ and CCSD(T)/aug-cc-pVDZ levels. The data allow us to investigate changes in the OH stretch band position and intensity as a function of overtone order arising from the influence of hydrogen bonding. Furthermore, calculations at the MP2/aug-cc-pVDZ level show that there are three stable conformers of PFA with relative energies of 0, 13.54, and 13.76 kJ/mol, respectively. In the room temperature spectra, however, we see evidence for transitions from only the lowest energy conformer. The geometrical parameters and vibrational frequencies of the most stable conformer are presented.  相似文献   

7.
The near infrared vibrational overtone absorption spectrum of liquid phase cyclohexanol in carbon tetrachloride in different concentrations are examined in the region Deltav=2, 3 and 4. The free and bonded OH local mode mechanical frequency values and anharmonicity values obtained from fitting the overtones are analysed. The observation supports the conclusions drawn from earlier experimental studies on anharmonicity variation of OH-stretching vibrations of alcohols due to intermolecular hydrogen bonding. Our observation is also in agreement with the ab initio calculations on water dimer and trimer. Mechanical anharmonicity of bonded OH-stretching bands tends to increase as a consequence of strong hydrogen bonding at higher concentrations.  相似文献   

8.
The spectroscopy of the vapor phase hydrogen bonded complex formed between methanol and trimethylamine has been studied in the near-infrared region. A combination band involving one quantum of OH stretch and one quantum of COH bend has been observed for the complex. The much less intense first OH-stretching overtone transition has been tentatively assigned. This assignment is supported by anharmonic oscillator local mode calculations.  相似文献   

9.
Vibrational spectra of vapor-phase 1,2-ethanedithiol and 2-mercaptoethanol were recorded to investigate weak intramolecular interactions. The spectra were recorded with conventional absorption spectroscopy and laser photoacoustic spectroscopy in the 2000-11,000 cm(-1) region. The room temperature spectra of each molecule are complicated by contributions from several conformers. Anharmonic oscillator local-mode calculations of the OH- and SH-stretching transitions have been performed to facilitate assignment of the different conformers in the spectra. We observe evidence of hydrogen-bond-like interactions from OH to S, but not from SH to O or S. The OH to S intramolecular interaction in 2-mercaptoethanol is weak and comparable to that found in the OH to O interaction in ethylene glycol.  相似文献   

10.
Laser-induced fluorescence (LIF), dispersed fluorescence (DF), mass-resolved one-color resonance enhanced two-photon ionization (RE2PI) and UV-UV hole-burning spectra of 2-aminoindan (2-AI) were measured in a supersonic jet. The hole-burning spectra demonstrated that the congested vibronic structures observed in the LIF excitation spectrum were responsible for three conformers of 2-AI. The origins of the conformers were observed at 36931, 36934, and 36955 cm(-1). The DF spectra obtained by exciting the band origins of the three conformers showed quite similar vibrational structures, with the exception of the bands around 600-900 cm(-1). The molecular structures of the three conformers were assigned with the aid of ab initio calculations at the MP2/6-311+G(d,p) level. An amino hydrogen of the most stable conformer points toward the benzene ring. The stability of the most stable conformer was attributed to an intramolecular N-H...pi hydrogen bonding between the hydrogen atom and the pi-electron of the benzene ring. The other two conformers, devoid of intramolecular hydrogen bonding, were also identified for 2-AI. This suggests weak hydrogen bonding in the most stable conformer. The intramolecular N-H...pi hydrogen bonding in 2-AI was discussed in comparison with other weak hydrogen-bonding systems.  相似文献   

11.
Vapor phase absorption spectra and integrated band intensities of the OH stretching fundamental as well as first and second overtones (2ν(OH) and 3ν(OH)) in peroxyacetic acid (PAA) have been measured using a combination of FT-IR and photoacoustic spectroscopy. In addition, ab initio calculations have been carried out to examine the low energy stable conformers of the molecule. Spectral assignment of the primary features appearing in the region of the 2ν(OH) and 3ν(OH) overtone bands are made with the aid of isotopic substitution and anharmonic vibrational frequency calculations carried out at the MP2/aug-cc-pVDZ level. Apart from features associated with the zeroth-order OH stretch, the overtone spectra are dominated by features assigned to combination bands composed of the respective OH stretching overtone and vibrations involving the collective motion of several atoms in the molecule resulting from excitation of the internal hydrogen bonding coordinate. Integrated absorption cross section measurements reveal that internal hydrogen bonding, the strength of which is estimated to be ~20 kJ/mol in PAA, does not result in a enhanced oscillator strength for the OH stretching fundamental of the molecule, as is often expected for hydrogen bonded systems, but does cause a precipitous drop in the oscillator strength of its 2ν(OH) and 3ν(OH) overtone bands, reducing them, respectively, by a factor of 165 and 7020 relative to the OH stretching fundamental.  相似文献   

12.
The near infrared vibrational overtone absorption spectra of liquid phase aniline and chloroanilines are reported. The analysis of the observed CH and NH local mode mechanical frequency values shows that intramolecular hydrogen bonding occurs between NH2 group and chlorine atom in o-chloroaniline. This observation supports the conclusion drawn from microwave spectroscopic studies reported earlier.  相似文献   

13.
It is well-known that intramolecular hydrogen bonding affects the relative energetics of conformers, as well as the OH stretching peak positions, intensities, and width. In this study we simulated the Δv(OH) = 3, 4 overtone spectra of 1,5-pentanediol (PeD) and 1,6-hexanediol (HD) using the peak positions, intensities, and width calculated from the B3LYP/6-31+G(d,p) method. Furthermore, room temperature free energy calculations were performed using B3LYP/6-31+G(d,p) MP2/6-31+G(d,p), and MP2/6-311++G(3df,3pd) to obtain the relative population of the conformers. From the calculation of 109 and 381 distinct conformers for PeD and HD, respectively, we find that for these long chain diols the intramolecular hydrogen bonded conformers are not the most dominant conformation at room temperature. This is in stark contrast with shorter chain diols such as ethylene glycol for which the hydrogen bonded conformer dominates the population at room temperature. On the other hand, we found that the correlation between the hydrogen bonded OH red shift versus the homogeneous width, Γ = 0.0155(Δω)(1.36), which was derived for shorter chain diols, is valid even for these longer chain diols. We also showed that the intramolecular hydrogen bonded OH initially decays through the CCOH torsion and COH bending mode no matter how long the alkanediol chain length is for 1,n-alkanediols for n up to 6.  相似文献   

14.
We have simulated the HOONO vibrational overtone spectrum with use of a local mode Hamiltonian that includes the OH-stretching, OOH-bending, and NOOH-torsional modes and coupling between all three modes. The local mode parameters and the dipole moment function are calculated with coupled-cluster ab initio theory and an augmented Dunning-type triple-zeta basis set. We investigate the accuracy of the local mode parameters obtained from two different potential-energy fitting routines, as well as the sensitivity of these parameters to the basis set employed. We compare our simulated spectra to previously published action spectra in the first and second OH-stretching overtone regions. In addition we have recorded the spectrum in the OH-stretch and OOH-bend combination region around 7700 cm-1 and we also compare to this. Our simulated spectrum is in qualitative agreement with experiment in the first and second OH-stretching overtone and in the stretch-bend regions.  相似文献   

15.
The near infrared vibrational overtone absorption spectrum of liquid phase o-fluorophenol is examined in the region deltav=2, 3 and 4. The OH frequencies are compared with that of o-chlorophenol and phenol. Considering the relative electronegativities of all halogens, one might expect the order of intramolecular hydrogen bond strength for o-fluorophenol to be the greatest among all halogenophenols. It is evident that o-fluorophenol forms a weaker intramolecular hydrogen bond (an anomalous trend) contrary to that expected from relative electronegativities of halogens. The local mode mechanical frequency values and anharmonicity values obtained from fitting the overtones are analysed. Our observation is in agreement with the previous experimental as well as the recent theoretical vibrational analysis of halogenophenols using density functional theory (B3LYP). The overtone spectra of o-fluorophenol in carbon tetrachloride in different concentrations are also examined. It is noted that the OH-red shift which arises due to the intermolecular bond formation between the cis and trans conformers of o-fluorophenol (dimerization) increases with concentration.  相似文献   

16.
The vibrational overtone spectra of propargyl alcohol (prop-2-yn-1-ol, PA), allyl alcohol (prop-2-en-1-ol, AA), propargyl carbinol (but-3-yn-1-ol, PC) and allyl carbinol (but-3-en-1-ol, AC) were recorded with intracavity laser photoacoustic spectroscopy (ICL-PAS) in the Δv(OH) = 3, 4 and 5 regions for propargyl alcohol and allyl alcohol and in the Δv(OH) = 4 and 5 regions for propargyl carbinol and allyl carbinol. Local mode anharmonic oscillator calculations were performed with explicitly correlated coupled cluster methods to guide spectral assignment. Atoms in molecules (AIM) and non-covalent interactions (NCI) calculations were carried out to analyze the interactions between the OH-group and the π-electrons of the carbon-carbon multiple bonds. We ascertain the effect of the carbon chain length and saturation on the conformation and spectroscopy of the four alcohols in relation to intramolecular hydrogen bonding interactions.  相似文献   

17.
Dimethylamine (DMA) has been studied by gas-phase Fourier transform infrared (FTIR) spectroscopy. We have identified a spectral transition that is assigned to the DMA dimer. The IR spectra of the dimer in the gas phase are obtained by spectral subtraction of spectra recorded at different pressures. The enthalpy of hydrogen bond formation was obtained for the DMA dimer by temperature-dependence measurements. We complement the experimental results with ab initio and anharmonic local mode model calculations of monomer and dimer. Compared to the monomer, our calculations show that in the dimer the N-H bond is elongated, and the NH-stretching fundamental shifts to a lower wavenumber. More importantly, the weak NH-stretching fundamental transition has a pronounced intensity increase upon complexation. However, the first NH-stretching overtone transition is not favored by the same intensity enhancement, and we do not observe the first NH-stretching overtone of the dimer. On the basis of the measured and calculated intensity of the NH-stretching transition of the dimer, the equilibrium constant for dimerization at room temperature was determined.  相似文献   

18.
We have recorded vapor-phase photoacoustic spectra of cyclopropane, ethylene oxide, and ethylene sulfide in the third, fourth, and fifth CH-stretching overtone regions. We have used a harmonically coupled anharmonic oscillator local mode model to facilitate analysis of the spectra. Fermi resonance between the CH-stretching and HCH-bending vibrations is essential to explain the observed wide and multistructured CH-stretching overtone bands. A number of weak combination bands can account for the remaining experimental features observed to the blue of the CH-stretching regions. We have reassigned the fundamental spectra of these three-membered rings.  相似文献   

19.
We have calculated the band profiles of the OH-stretching fundamental and overtone transitions in the proton donor unit of the water dimer complex. We have used a local mode Hamiltonian that includes both OH-stretching and OO-stretching motion but separates these adiabatically. The variation of OH-stretching frequency and anharmonicity with OO displacement from equilibrium contributes to the effective OO-stretching potentials for each OH-stretching state. The resulting OO-stretching energy levels and wave functions are used to simulate the vibrational profile of each OH-stretching transition. The coupled cluster with singles, doubles, and perturbative triples ab initio method with an augmented triple-zeta correlation consistent basis set has been used to obtain the necessary parameters, potentials, and dipole moment functions. We find that the OO-stretching transitions associated with a given hydrogen bonded OH-stretching transition are spread significantly and this spread increases with overtone. The spread is minor for the free OH-stretching transition. The inclusion of the OO-stretching mode has a limited effect on the overall OH-stretching band intensity.  相似文献   

20.
For the first time the argon-matrix low-temperature IR spectra of cysteine are recorded. They reveal a quite complicated spectral pattern, which can also be reproduced in the N2 matrix. Assignment of the observed spectra is undertaken on the basis of comparison of the experimental and calculated B3LYP/aug-cc-pVDZ anharmonic IR spectra. The presence of at least three, and possibly even six or more, cysteine conformers with and without intramolecular hydrogen bonding is confirmed. On the basis of the calculated vibrational circular dichroism spectra, we predict this technique to be more distinctive for conformers than IR absorption is.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号