首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Using anomalous viewpoint, we study the Hawking radiation from a kind of topological Kerr Anti-de-Sitter (Kerr-AdS) black hole with one rotational parameter. We employ the covariant gauge and gravitational anomalies. The result supports the Robinson-Wilczek opinion and shows that the Hawking temperature can be correctly determined by cancelling covariant gauge and gravitational anomalies at the horizon.  相似文献   

2.
In this letter a discussion is offered on how symmetry breaking of a theory with twisted bundle of two chiral SU(2) bundles leads to a set of gauge potentials from each group on the physical vacuum that are vector and chiral. The result is that symmetry breaking of this theory leads to massive A 3 transverse modes of the 3-photon along with electromagnetic photons plus the massive neutral and charged weakly interacting bosons. The electromagnetic sector is demonstrated to be a massless vector field and the remainder is a broken chiral field theory.  相似文献   

3.
The argument for non-existence of the B (3) field proposed by E. Comay is based on adding radians to the phase of a plane wave. This is trivially incorrect because B (3) is a vacuum component of a C conserving Yang-Mills gauge field theory.  相似文献   

4.
Reinhard Stock 《Pramana》2003,60(5):965-982
I review recent progress in ultrarelativistic nucleus-nucleus collisions, and the connection of this field to modern QCD theory of deconfinement and/or chiral symmetry restoration. The talks at this Conference have shown a convergence of data and theory as far as the CERN SPS investigations at √s = 17 GeV are concerned; the parton-hadron phase boundary seems now located atT = 170 ± 10 MeV. New data from RHIC and direct photon production results from CERN have been shown that point out the field’s future direction: analysis of partonic matter atT > 200 MeV. Astrophysics analysis was shown to be linked crucially to further theoretical progress with non-perturbative QCD.  相似文献   

5.
P. Mitra 《Pramana》2004,62(3):639-642
In the standard model, the Cabibbo-Kobayashi-Maskawa matrix, which incorporates the time-reversal violation shown by the charged current weak interactions, originates from the Higgs-quark interactions. The Yukawa interactions of quarks with the physical Higgs particle can contain further complex phase factors, but nevertheless conserveT, as shown by constructing the fermionT transformation and the invariant Euclidean fermion measure.  相似文献   

6.
7.
The emergence of the Evans-Vigier fieldB (3) of vacuum electromagnetism has been accompanied by a novel charge quantization condition inferred from 0(3) gauge theory. This finding is used to derive the de Broglie matter-wave equation from the classical Hamilton-Jacobi (HJ) equation of one electron in the electromagnetic field. The HJ equation is used with the charge quantization condition to show that, in a perfectly elastic photon-electron interaction, complete transfer of angular momentum occurs self-consistently, and the electron acquires the angular momentum of the photon. In this limit the electron travels infinitesimally near the speed of light, and its concomitant electromagnetic fields become indistinguishable from those of the uncharged photon. This result independently proves the validity of the charge quantization condition and demonstrates unequivocally the existence of the vacuum fieldB (3).  相似文献   

8.
We show how the Implicit Regularization Technique (IRT) can be used for the perturbative renormalization of a simple field theoretical model generally used as a test theory for new techniques. While IRT has been applied successfully in many problems involving symmetry-breaking anomalies and nonabelian gauge groups, all at one-loop level, this is the first attempt at a generalization of the technique for perturbative renormalization. We show that the overlapping divergent loops can be given a completely algebraic treatment. We display the connection between renormalization and counterterms in the Lagrangian. The algebraic advantages make IRT worth studying for perturbative renormalization of gauge theories.  相似文献   

9.
By using an 0(3) gauge group, a non-Abelian theory of vacuum electrodynamics is developed in which the newly discovered longitudinal vacuum fieldsB (3) andi E (3) appear self-consistently with the usual plane wavesB (1),B (2),E (1), andE (2) in the circular basis (1), (2), (3), a complex representation of space. Using the charge quantization condition the vacuum Maxwell equations are given in the non-Abelian representation.  相似文献   

10.
The first and second Maurer-Cartan structure relations are combined with the Evans field equation [1] for differential forms to build a grand unified field theory based on differential geometry. The tetrad or vielbein plays a central role in this theory, and all four fields currently thought to exist in nature can be described by the same equations, the tangent space index of the tetrad in general relativity being identified with the tetrad's internal (gauge group) index guage theory.  相似文献   

11.
Detectors based on the superconducting-insulating-superconducting (SIS) junction long ago surpassed Schottky-diode semiconductor detectors as the most sensitive heterodyne mixers in the millimeter and submillimeter (far-infrared) wavelength range. Other novel superconducting device configurations have been applied as direct detectors. Though still in the early stages of development, and yet to find widespread application, they have demonstrated advantages over traditional semiconductor detectors in specialized situations. Exciting progress has been made in recent years in developing the superconducting tunnel junctions (STJ) as a photon detector for optical and near-optical wavelengths, where silicon CCD's are currently dominant. I examine some of the areas in which the properties of STJ detectors may best match the instrument capabilities that astronomical observations require, and discuss the implications of the intrinsic spectral resolution of the STJ. This capability will enable a significant increase in observing efficiency, once the technology matures, that should justify increased complexity of cryogenic systems, particularly for instruments to be used on the next generation of large ground-based telescopes.  相似文献   

12.
We address in a recent gauge model of unparticles the issues that are important for consistency of a gauge theory, i.e., unitarity and the Ward identity of the physical amplitudes. We find that non-integrable singularities arise in physical quantities like the cross section and the decay rate from the gauge interactions of unparticles. We also show that the Ward identity is violated due to the lack of a dispersion relation for charged unparticles although the Ward–Takahashi identity for general Green functions is incorporated in the model. A previous observation that the contribution of the unparticle (with scaling dimension d) to the gauge boson self-energy is a factor (2−d) of the particle’s self-energy has been extended to the Green function of triple gauge bosons. This (2−d) rule may be generally true for Green functions for any number of points of the gauge bosons. This implies that the model would be trivial even as one that mimics certain dynamical effects on gauge bosons in which unparticles serve as an interpolating field.  相似文献   

13.
The gauge structure of anomalies and the related currents is analyzed in detail. We construct the covariant forms for both the currents and the anomalies for general gauge theories in even-dimensional space-time. The results are then extended to determine the structure of gravitational anomalies. These can always be interpreted as anomalies for local Lorentz transformations.  相似文献   

14.
The body fixed frame with respect to local gauge transformations is introduced. Rigid gauge rotations in QCD and their Schrödinger equation are studied for static and dynamic quarks. Possible choices of the rigid gauge field configuration corresponding to a nonvanishing static colormagnetic field in the body fixed frame are discussed. A gauge invariant variational equation is derived in this frame. For large numberN of colors the rigid gauge field configuration is regarded as random with maximally random probability distribution under constraints on macroiscopic-like quantities. For the uniform magnetic field the joint probability distribution of the field components is determined by maximizing the appropriate entropy under the area law constraint for the Wilson loop. In the quark sector the gauge invariance requires the rigid gauge field configuration to appear not only as a background but also as inducing an instantaneous quark-quark interaction. Both are random in the largeN limit.Communicated by F. Lenz  相似文献   

15.
《Nuclear Physics B》1986,273(1):93-108
Simple and tractable examples of abelian and non-abelian gauge systems with global anomalies are presented in quantum mechanics. Explicit calculations are done both in the path-integral and hamiltonian formalism. Algebraic criteria are given for the existence of global gauge anomalies. These criteria are applied for every gauge group and many representations. The inconsistency of theories with a global gauge anomaly is discussed.  相似文献   

16.
A gauge field is usually described as a connection on a principal bundle. It induces a covariant derivative on associated vector bundles, sections of which represent matter fields. In general, however, it is not possible to define a covariant derivative on non-linear fiber bundles, i.e. on those which are not vector bundles. We definelogarithmic covariant derivatives acting on two special non-linear fiber bundles — on the principal bundle and on the local gauge group bundle. The logarithmic derivatives map from sections of these bundles to the sections of the local gauge algebra bundle. Some properties of the logarithmic derivatives are formulated.  相似文献   

17.
This paper presents linear pulse response of a Resonant Cavity Enhanced (RCE) P-i-N fotodiode. The RCE P-i-N photodiode designed for high-speed aplication is analysed for various submicron thicknesses of absorption layer, bias voltages, active areas and incident pulse optical excitations. The results are obtained by numerical simulation of the complete phenomenological model for two valley semiconductor. Great enhancement of the quantum efficiency and the product bandwidth-quantum efficiency, is obvious from obtained results for this photodiode type.  相似文献   

18.
Electron cyclotron heating (ECH) is one of the main candidates for heating and current drive on ITER (170 GHz) and W7-X (140 GHz). High unit power (1 MW or greater) and high efficiency single-mode continuous-wave (CW) gyrotrons are under development in order to reduce significantly the systems costs. Face-cooled double-disk sapphire and silicon nitride windows (FC-75 liquid cooling), cryogenically edge-cooled single-disk sapphire (liquid nitrogen, liquid neon or liquid helium cooling) and silicon (230 K refrigerator cooling) windows, water-edge-cooled single-disk CVD-diamond windows and water-cooled distributed windows are being investigated in order to solve the window problem. A water-cooled window has two very important advantages; it employs a cheap and effective coolant and it is compact and probably more reliable than other solutions and thus can also be easily used as a torus window. The present paper summarizes the development status of high-power millimeter-wave windows with emphasis on CVD diamond.  相似文献   

19.
Some aspects of supersymmetric gauge theories and discussed. It is shown that dynamical supersymmetry breaking does not occur in supersymmetric QED in higher dimensions. The cancellation of both local (perturbative) and global (non-perturbative) gauge anomalies are also discussed in supersymmetric gauge theories. We argue that there is no dynamical supersymmetry breaking in higher dimensions in any supersymmetric gauge theories free of gauge anomalies. It is also shown that for supersymmetric gauge theories in higher dimensions with a compact connected simple gauge group, when the local anomaly-free condition is satisfied, there can be at most a possibleZ 2 global gauge anomaly in extended supersymmetricSO(10) (or spin (10)) gauge theories inD=10 dimensions containing additional Weyl fermions in a spinor representation ofSO(10) (or spin (10)). In four dimensions with local anomaly-free condition satisfied, the only possible global gauge anomalies in supersymmetric gauge theories areZ 2 global gauge anomalies for extended supersymmetricSP(2N) (N=rank) gauge theories containing additional Weyl fermions in a representation ofSP(2N) with an odd 2nd-order Dynkin index.  相似文献   

20.
《Nuclear Physics B》1988,297(2):315-337
Using differential geometry in superspace it is shown how consistency conditions are solved for coupled supersymmetry, gauge and Lorentz anomalies in normal space-time. Anomaly cancellation mechanisms in d = 10 are shown to remove possible supersymmetry anomalies as well as gauge and Lorentz anomalies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号