首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Middle infrared absorption, Raman scattering and proton magnetic resonance relaxation measurements were performed for [Zn(NH3)4](BF4) in order to establish relationship between the observed phase transitions and reorientational motions of the NH3 ligands and BF4 anions. The temperature dependence of spin-lattice relaxation time (T1(1H)) and of the full width at half maximum (FWHM) of the bands connected with ρr(NH3), ν2(BF4) and ν4(BF4) modes in the infrared and in the Raman spectra have shown that in the high temperature phase of [Zn(NH3)4](BF4)2 all molecular groups perform the following stochastic reorientational motions: fast (τR≈10−12 s) 120° flips of NH3 ligands about three-fold axis, fast isotropic reorientation of BF4 anions and slow (τR≈10−4 s) isotropic reorientation (“tumbling”) of the whole [Zn(NH3)4]2+ cation. Mean values of the activation energies for uniaxial reorientation of NH3 and isotropic reorientation of BF4 at phases I and II are ca. 3 kJ mol−1 and ca. 5 kJ mol−1, respectively. At phases III and IV the activation energies values for uniaxial reorientation of both NH3 and of BF4 equal to ca. 7 kJ mol−1. Nearly the same values of the activation energies, as well as of the reorientational correlation times, at phases III and IV well explain existence of the coupling between reorientational motions of NH3 and BF4. Splitting some of the infrared bands at TC2=117 K suggests reducing of crystal symmetry at this phase transition. Sudden narrowing of the bands connected with ν2(BF4), ν4(BF4) and ρr(NH3) modes at TC3=101 K implies slowing down (τR?10−10 s) of the fast uniaxial reorientational motions of the BF4 anions and NH3 ligands at this phase transition.  相似文献   

2.
NMR measurements of proton spin-lattice relaxation times T1 and T1? in the layered intercalation compounds TiS2(NH3)1.0 and TaS2(NH3)x (x = 0.8, 0.9, 1.0) are reported as functions of frequency and temperature (100 K – 300 K). These observations probe the spectral density of magnetic fluctuations due to motions of the intercalated molecules at frequencies accessible to the T1 (4–90 MHz) and T1? (1–100 kHz) measurements. Since the average molecular hopping time (τ) can be changed by varying temperature, different regions of the spectral density can be examined. For T > 200 K, both T?11 and T?11? vary logarithmically with frequency, reflecting the two dimensional character of the molecular diffusion. The temperature dependence of T1 suggests that a more accurate picture of the short time dynamics is required. No dependence of relaxation rate on vacancy concentration is found.  相似文献   

3.
The dispersion curves of the dielectric response in single crystal NH4H2PO4 were obtained in the radio frequency range and below the high-temperature transition at Tp−160 °C. The results reveal dielectric relaxation at low frequency, which is about 105 Hz at 70 °C, and it shifts to higher frequencies (∼3×106 Hz) as the temperature increases. The relaxation frequency was determined from the peak obtained in the imaginary part of the permittivity as well as from the derivative of the real part of the permittivity. The activation energy Ea=0.55 eV, obtained from the relaxation frequency is very close to that derived from the dc conductivity. We suggest that this dielectric relaxation could be due to the proton jump and phosphate reorientation that cause distortion and change the local lattice polarizability inducing dipoles like   相似文献   

4.
We investigated the temperature dependences of the line shape, spin-lattice relaxation time, T1, and spin-spin relaxation time, T2, of the 1H nuclei in (NH4)4LiH3(SO4)4 single crystals. On the basis of the data obtained, we were able to distinguish the “ammonium” and “hydrogen-bond” protons in the crystals. For both the ammonium and hydrogen-bond protons in (NH4)4LiH3(SO4)4, the curves of T1 and T2 versus temperature changed significantly near the ferroelastic and superionic phase transitions at TC (=232 K) and TS (=405 K), respectively. In particular, near TS, the 1H signal due to the hydrogen-bond protons abruptly narrowed and the T2 value for these protons abruptly increased, indicating that these protons play an important role in this superionic phase transition. The marked increase in the T2 of the hydrogen-bond protons above TS indicates that the breaking of O-H?O bonds and the formation of new H-bonds with HSO4- contribute significantly to the high-temperature conductivity of (NH4)4LiH3(SO4)4 crystals.  相似文献   

5.
6.
The temperature dependence of the proton spin-lattice relaxation time T1 of triglycine sulfate (NH2CH2COOH)3 · H2SO4 is investigated near the transition point under several conditions. Any anomalous behavior of T1 cannot be observed in contrast with an earlier report by Brosowski et al.  相似文献   

7.
Proton spin-lattice relaxation times T1 and T have been measured in NH4IO4 between 150 K and 50 K. The relaxation in the rotating frame was strongly nonexponential between 70 K and 53 K, which supports the tunneling assisted relaxation model of NH+4 in the rotating frame. The tunneling frequency was determined to be Λ0 =1.5 MHz.  相似文献   

8.
The magnetic susceptibility of the layered compounds (CH2)3(NH3)2FeCl2Br2 and (CH2)6(NH3)2FeCl2Br2 has been measured in the range 80 < T < 300 K. The results follow a Curie-Weiss behavior in the range 120 < T < 300 K but are field dependent for T < 120 K. The results are interpreted in terms of a two-dimensional antiferromagnetic interaction which is canted. A comparison with the corresponding pure chloride compounds is given.  相似文献   

9.
At 141 °C the solid acid CsHSO4 is known to undergo transition to a superprotonic phase that is characterized by dramatic (several-order-of-magnitude) increases in hydrogen ion conductivity. Proton NMR spin-spin relaxation time T2 measurements reported here for CsHSO4 also reveal substantial increases (factors of 20-30) in the vicinity of the transition temperature. In the temperature range just below the transition (70-136 °C), T2 increases by a factor of order 10 relative to the rigid-lattice regime, suggesting motional narrowing of the NMR resonance line. In the regime of motional narrowing, the activation energy barrier to diffusion is 0.40 eV, as determined from the present T2 results. NMR spin-lattice relaxation T1 measurements also show behavior consistent with transition to a regime of rapid hydrogen motion. In particular, proton T1's decrease with temperature (from 80 to 120 °C), and then drop sharply near the transition temperature. Above the transition temperature, T1 exhibits a minimum in which the correlation time is found to be ∼2 ns.  相似文献   

10.
The chemical preparation, the calorimetric studies and the crystal structure are given for two new organic sulfates NH3(CH2)5NH3SO4 1.5H2O (DAP-S) and NH3(CH2)9NH3SO4·H2O (DAN-S). DAP-S is monoclinic P21/n with unit cell dimensions: a=11.9330(2) Å; b=10.9290(2) Å; c=17.5260(2) Å; β=101.873(1)°; V=2236.77(6) Å3; and Z=8. Its atomic arrangement is described as inorganic layers of units and water molecules separated by organic chains. DAN-S is monoclinic P21/c with unit cell parameters: a=5.768(2) Å; b=25.890(10) Å; c=11.177(5) Å; β=115.70(4)°; V=1504.0(11) Å3 and Z=4. Its structure exhibits infinite chains, parallel to the [100] direction where the organic cations are interconnected. In both structures a network of strong and weak hydrogen bonds connects the different components in the building of the crystal.  相似文献   

11.
The low temperature spontaneous magnetization of the spin 1/2 b.c.c. ferromagnet has been computed using the self-consistently renormalized spin-wave theory of Bloch, taking into account weakly anisotropic exchange. A good agreement with our experimental data in Cu(NH4)2Br4, 2H2O and CuRb2Br4, 2H2O is observed for 0 < T/Tc < 0.5, using the following anisotropy fields at 0°K: (293 ± 25) oe in Cu(NH4)2Br4, 2H2O and (300 ± 25)oe in CuRb2Br4, 2H2O.  相似文献   

12.
Measurements of the proton spin-lattice relaxation time T1 on three stoichiometries of titanium-rich Ti1+xS2·NH3 show that the diffusion of intercalated ammonia is not dependent on the presence of titanium interstials although these reduce dramatically the rate of uptake of ammonia.  相似文献   

13.
Proton diffusion in the room-temperature phase (phase II) of [(NH4)1?xRbx]3H(SO4)2 (0≤x≤1) has been studied by means of 1H spin-lattice relaxation times in the rotating frame, T. The 1H T values were measured at 200.13 MHz in the range of 380–490 K. The ammonium protons and the acidic protons have independent T values in the higher temperature range of phase II, suggesting that the spin diffusion between the two species is ineffective. The translational diffusion of the acidic protons is the most dominant mechanism to relax both the ammonium protons and the acidic protons in phase II. The 1H T values in phase II are analyzed theoretically and the motional parameters are obtained. The results of NMR well explain the macroscopic proton conductivity.  相似文献   

14.
Measurements of the temperature and the magnetic field dependence of the proton spin-lattice relaxation time T1 in KH3 (SeO3)2 show the presence of a dynamic narrow central peak in the local proton fluctuation spectrum the width of which is less than 0.1 MHz.  相似文献   

15.
Hydrogen behavior in the α phase of Mg2NiHx system was studied by 1H NMR. 1H NMR spectra and spin-lattice relaxation times, T1 and T, of Mg2NiH0.22 were measured in the temperature range between 100 and 480 K. The drastic change in the linewidth is observed between 170 and 340 K, and 1H rigid lattice is observed below 170 K, from which it is deduced that the hydrogen atoms are randomly distributed in α-Mg2NiHx. The relaxation mechanism for t1 is the paramagnetic one, while the T value is determined partially by hydrogen diffusion. The hydrogen diffusion rate has been determined from the linewidth and the T value. The paramagnetic relaxations observed in T1 and T have been discussed relating to the hydrogen diffusion.  相似文献   

16.
We report the resistivity (ρ)-temperature (T) patterns in (1-x)La0,7Ca0,3MnO3+xAl2O3 composites (0≤x≤0.05) over a temperature regime of 50-300 K. Al2O3 addition has increased the resistivity of these composites. The Curie temperature (TC) is almost independent on the Al2O3 content and is about 250 K for all the samples, while the metal-insulator transition temperature (TMI) decreases with increasing Al2O3 content. Based on the phenomenological equation for conductivity under a percolation approach, which is dependent on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions, we fitted the experimental data (ρT) from 50 to 300 K and find that the activation barrier increases as Al2O3 content increases.  相似文献   

17.
We have studied the motion of lithium ions in LixTiS2 (x = 0.33, 0.94) using pulsed NMR techniques. The temperature dependences of the spin lattice relaxation in the rotating frame (T1?) suggest comparable activation energies for lithium ion diffusion for both samples, 3370 K, but an appreciably longer hopping time for the x = 0.94 sample. Low temperature values of T2 agree with calculated and measured second moments for both materials.  相似文献   

18.
The complex dielectric constant of (NH4)2BeF4 single crystals was measured in the frequency range from 0.6 to 300 MHz in the vicinity of the transition temperature Tc. It was found that, the relaxation frequency is about 1 × 108Hz atTc. Dielectric relaxation can be described by a polydispersive process.  相似文献   

19.
Proton NMR relaxation times (T2, T1, T1? and T1D) are reported for hydrous tin oxide (SnO2·nH2O) and hydrous titania (TiO2·nH2O) in the temperature range 135 K<T<336 K at 60 and 20 MHz. The data show proton transport including exchange between three environments: (1) surface hydroxyl groups, (2) “acid solution” in micropores (diameter <100 Å) and (3) “acid solution” in macropores (diameter>1000 Å). The NMR behaviour has many features in common with that of adsorbed water systems. A consistent interpretation of both NMR and conductivity data is presented.  相似文献   

20.
Aurivillius SrBi2(Nb0.5Ta0.5)2O9 (SBNT 50/50) ceramics were prepared using the conventional solid-state reaction method. Scanning electron microscopy was applied to investigate the grain structure. The XRD studies revealed an orthorhombic structure in the SBNT 50/50 with lattice parameters a=5.522 Å, b=5.511 Å and c=25.114 Å. The dielectric properties were determined by impedance spectroscopy measurements. A strong low frequency dielectric dispersion was found to exist in this material. Its occurrence was ascribed to the presence of ionized space charge carriers such as oxygen vacancies. The dielectric relaxation was defined on the basis of an equivalent circuit. The temperature dependence of various electrical properties was determined and discussed. The thermal activation energy for the grain electric conductivity was lower in the high temperature region (T>303.6 °C, Ea−ht=0.47 eV) and higher in the low temperature region (T<303.6 °C, Ea−lt=1.18 eV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号