首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The minerals mimetite Pb5(AsO4)3Cl, arsenian pyromorphite Pb5(PO4,AsO4)3Cl and hedyphane Pb3Ca2(AsO4)3Cl have been studied by Raman spectroscopy complimented with infrared spectroscopy. Mimetite is characterised by a band at 812–3 cm−1 attributed to the Ag mode. For the arsenian pyromorphite this band is observed at 818 cm−1 and for hedyphane at 819 cm−1. For mimetite and hedyphane bands at 788 and 765 cm−1 are attributed to Au and E1u vibrational modes and are both Raman and infrared active. For the arsenian pyromorphite, Raman bands at 917–1014 cm−1 are attributed to phosphate stretching vibrations. Raman spectroscopy clearly identifies bands attributable to isomorphous substitution of arsenate by phosphate. The observation of low intensity bands in the 3200–3550 cm−1 region are assigned to adsorbed water and OH units, thus indicating some replacement of chloride ions with hydroxyl ions.  相似文献   

2.
The samples of dibarium magnesium orthoborate Ba2Mg(BO3)2 were synthesized by solid-state reaction. The X-ray diffraction (XRD) patterns and Raman spectra of the samples were collected. Electronic structure and vibrational spectroscopy of Ba2Mg(BO3)2 were systematically investigated by first principle calculation. A direct band gap of 4.4 eV was obtained from the calculated electronic structure results. The top valence band is constructed from O 2p states and the low conduction band mainly consists of Ba 5d states. Raman spectra for Ba2Mg(BO3)2 polycrystalline were obtained at ambient temperature. The factor group analysis results show the total lattice modes are 5Eu + 4A2u + 5Eg + 4A1g + 1A2g + 1A1u, of which 5Eg + 4A1g are Raman-active. Furthermore, we obtained the Raman active vibrational modes as well as their eigenfrequencies using first-principle calculation. With the assistance of the first-principle calculation and factor group analysis results, Raman bands of Ba2Mg(BO3)2 were assigned as Eg (42 cm−1), A1g (85 cm−1), Eg (156 cm−1), Eg (237 cm−1), A1g (286 cm−1), Eg (564 cm−1), A1g (761 cm−1), A1g (909 cm−1), Eg (1165 cm−1). The strongest band at 928 cm−1 in the experimental spectrum is assigned to totally symmetric stretching mode of the BO3 units.  相似文献   

3.
The structural evolution and thermal behavior of polyacrylonitrile (PAN) homopolymer and copolymer [P(AN-IA)] containing about 1.5 mol% itaconic acid (IA) during stabilization in air were studied by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetry (TG). A new parameter Es=A1595cm−1/A2243cm−1 was defined to evaluate the extent of stabilization. The kinetic parameters, viz. activation energy (Ea) and pre-exponential factor (A) of the stabilization reactions were calculated by Kissinger method and Ozawa method. FTIR analysis indicated that the cyclization of nitrile groups was initiated at a lower temperature by the IA comonomer and the stabilization proceeded at a more moderate pace in P(AN-IA) than in PAN, while an IA additive was found to be decomposed and failed to initiate the cyclization at a lower temperature. The improvement effect of IA comonomer on the stabilization reactions was further confirmed by the dynamic thermal analysis and kinetic study.  相似文献   

4.
The rectifying junction characteristics of the organic compound pyronine-B film on a p-type Si substrate has been studied. The pyronine-B has been sublimed on the top of p-Si surface. The barrier height and ideality factor values of 0.79±0.04 and 1.13±0.06 eV for this structure have been obtained from the forward bias current-voltage (I-V) characteristics. From the low capacitance-frequency (C-f) characteristics as well as conductance-frequency (G-f) characteristics, the energy distribution of the interface states and their relaxation time have been determined in the energy range of (0.53−Ev)-(0.79−Ev) eV taking into account the forward bias I-V data. The interface state density Nss ranges from 4.93×1010 cm−2 eV−1 in (0.79−Ev) eV to 3.67×1013 cm−2 eV−1 in (0.53−Ev) eV. Furthermore, the relaxation ranges from 3.80×10−3 s in (0.53−Ev) eV to 4.21×10−4 s in (0.79−Ev) eV. It has been seen that the interface state density has an exponential rise with bias from the midgap towards the top of the valence band. The relaxation time shows a slow exponential rise with bias from the top of the valence band towards the midgap.  相似文献   

5.
Chen Y  Su YH  Zheng LM  Xia XH 《Talanta》2010,83(1):145-148
The electrochemistry of a macrocyclic metal complex Fe(notpH3) [notpH6 = 1,4,7-triazacyclononane-1,4,7-triyl-tris(methylene-phosphonic acid)] reveals that the protonation/deprotonation of the non-coordinated P-OH groups in Fe(notpH3) affects its formal potential value (E0′) considerably. Plotting E0′ as function of solution pH gives a straight line with a slope of −585 mV pH−1 in the pH range of 3.4-4.0, which is about ten times larger than the theoretical value of −58 mV pH−1 for a reversible proton-coupled single-electron transfer at 20 °C. A sensitive pH responsive electrochemical switch sensor is thus developed based on Fe(notpH3) which shows an “on/off” switching at pH ∼ 4.0.  相似文献   

6.
Two new cyano bridged Cu–Co and Cu–Fe trinuclear bimetallic assemblies, [(CuL)[Co(CN)6](CuL)]ClO4 · 3.5H2O (1) and [(CuL)[Fe(CN)6](CuL)] · 13H2O (2) where [L = (3E,5E)-N1,N4-bis((pyridin-2-yl)methylene)butane-1,4-diamine] have been prepared using cyanometallates as anion precursors and characterised by elemental analyses, spectroscopic studies, single crystal X-ray diffraction and cryomagnetic susceptibility measurements. Magneto-structural correlations have been drawn from cryomagnetic susceptibility measurements over a wide temperature range (2–300 K) under 0.5 T magnetic fields. Weak antiferromagnetic interactions with J = −0.81 and −0.73 cm−1 are found for 1 and 2, respectively, showing a very weak coupling, as expected from the diamagnetic long chain –NC–Co–CN–CN– and –NC–Fe–CN–CN– bridges revealed from the single crystal X-ray diffraction studies.  相似文献   

7.
The mononuclear high-spin iron(III) complexes [Fe(3-MeOsalpn)Cl(H2O)] (1) and [Fe(3-MeOsalpn)(NCS)(H2O)]·0.5CH3CN (2) and the tetranuclear oxo-bridged compound [{Fe(3-MeOsalpn)Gd(NO3)3}2(μ-O)]·CH3CN (3) [3-MeOsalpn2− = N,N′-propylenebis(3-methoxysalicylideneiminate)] have been prepared and magneto-structurally characterised. The iron(III) ion in 1 and 2 is six-coordinated in a somewhat distorted octahedral surrounding with the two phenolate-oxygens and two imine-nitrogens from the Schiff-base building the equatorial plane and a water (1 and 2) and a chloro (1)/thiocyanate-nitrogen (2) in the axial positions. The neutral mononuclear units of 1 and 2 are assembled into centrosymmetric dinuclear motifs through hydrogen bonds between the axially coordinated water molecule of one iron centre and methoxy-oxygen atoms from the Schiff-base of the adjacent iron atom. The values of the intradimer metal-metal distance within the supramolecular dimers are 4.930 (1) and 4.878 Å (2). The tetranuclear of 3 can be described as two {FeIII(3-MeOsalpn)} units connected through an oxo-bridge, each one hosting a [GdIII(NO3)3] entity in the outer cavity defined by the two phenolate- and two methoxy-oxygen atoms. The values of the intramolecular Fe?Fe and Fe?Gd distances in 3 are 3.502 and 3.606 Å, respectively. The analysis of the magnetic data of 1-3 in the temperature range 1.9-300 K shows the occurrence of weak intermolecular antiferromagnetic interactions in 1 and 2 [J = −0.76 (1) and −0.75 cm−1 (2) with the Hamiltonian defined as H = −JSFe1·SFe1] whereas two intramolecular antiferromagnetic interactions coexist in 3, one very strong between the two iron(III) ions (J1) through the oxo bridge and the other much weaker between the iron(III) and the Gd(III) ions (J2) across the double phenoxo oxygens [J1 = −275 cm−1 and J2 = −3.25 cm−1, the Hamiltonian being defined as H=-J1SFe1·SFe1-J2(SFe1·SGd1+SFe1·SGd1)]. These values are analysed in the light of the structural data and compared with those of related systems.  相似文献   

8.
The vibrational levels of selected rhombohedral rare earth oxyfluorides, REOF; RE = La, Gd, and Y, were deduced from the room temperature IR absorption and the Raman scattering spectra between 180 and 1000 cm−1 and between 10 and 700 cm−1, respectively. All four IR-active (2A2u + 2Eu) and six Raman-active (3A1g, + 3Eg) normal modes predicted by the group-theoretical analysis for the D3d factor group were observed. The vibrations were assigned with the aid of their intensity and frequency in good agreement with the cubic fluorite-like structure of stoichiometric REOF.  相似文献   

9.
The coordination of 10-electron diatomic ligands (BF, CO N2) to iron complexes Fe(CO)2(CNArTripp2)2 [ArTripp2=2,6-(2,4,6-(iso-propyl)3C6H2)2C6H3] have been realized in experiments very recently (Science, 2019 , 363, 1203–1205). Herein, the stability, electronic structures, and bonding properties of (E1E2)Fe-(CO)2(CNArTripp2)2 (E1E2=BF, CO, N2, CN, NO+) were studied using density functional (DFT) calculations. The ground state of all those molecules is singlet and the calculated geometries are in excellent agreement with the experimental values. The natural bond orbital analysis revealed that Fe is negatively charged while E1 possesses positive charges. By employing the energy decomposition analysis, the bonding nature of the E2E1–Fe(CO)2(CNArTripp2)2 bond was disclosed to be the classic dative bond E2E1→Fe(CO)2(CNArTripp2)2 rather than the electron-sharing double bond. More interestingly, the bonding strength between BF and Fe(CO)2(CNArTripp2)2 is much stronger than that between CO (or N2) and Fe(CO)2(CNArTripp2)2, which is ascribed to the better σ-donation and π back-donations. However, the orbital interactions in CN→Fe(CO)2(CNArTripp2)2 and NO+→Fe(CO)2(CNArTripp2)2 mainly come from σ-donation and π back-donation, respectively. The different contributions from σ donation and π donation for different ligands can be well explained by using the energy levels of E1E2 and Fe(CO)2(CNArTripp2)2 fragments.  相似文献   

10.
The crystal structure of an Li-bearing double-ring silicate mineral, sogdianite ((Zr1.18Fe3+0.55Ti0.24Al0.03)(?1.64,Na0.36)K0.85[Li3Si12O30], P6/mcc, a≈10.06 Å, c≈14.30 Å, Z=2), was investigated by neutron powder diffraction from 300 up to 1273 K. Rietveld refinements of displacement parameters revealed high anisotropic Li motions perpendicular to the crystallographic c-axis, indicating an exchange process between tetrahedral T2 and octahedral A sites. AC impedance spectra of a sogdianite single crystal (0.04×0.09×0.25 cm3) show that the material is an ionic conductor with conductivity values of σ=4.1×10−5 S cm−1 at 923 K and 1.2×10−3 S cm−1 at 1219 K perpendicular to the c-axis, involving two relaxation processes with activation energies of 1.26(3) and 1.08(3) eV, respectively.  相似文献   

11.
Matsumiya H  Iki N  Miyano S 《Talanta》2004,62(2):337-342
Sulfonylcalix[4]arenetetrasulfonate (SO2CAS) has been examined as a pre-column chelating reagent for ultratrace determination of metal ions by ion-pair reversed-phase high-performance liquid chromatography with spectrophotometric detection. Metal ions were converted into the SO2CAS chelates in an acetic buffer solution (pH 4.7). The chelates were injected onto a n-octadecylsilanized silica-type Chromolith™ Performance RP-18e column and were eluted using a methanol (50 wt.%)-water eluent (pH 5.6) containing tetra-n-butylammonium bromide (7.0 mmol kg−1), acetate buffer (5.0 mmol kg−1), and disodium ethylendiamine-N,N,N′,N′-tetraacetate (0.10 mmol kg−1). Under the conditions used, Al(III), Fe(III), and Ti(IV) were selectively detected among 21 kinds of metal ions [Al(III), Ba(II), Be(II), Ca(II), Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ga(III), Hf(IV), In(III), Mg(II), Mn(II), Mo(VI), Ni(II), Pb(II), Ti(IV), V(V), Zn(II), and Zr(IV)]. The detection limits on a 3σ blank basis were 8.8 nmol dm−3 (0.24 ng cm−3) for Al(III), 7.6 nmol dm−3 (0.42 ng cm−3) for Fe(III), and 17 nmol dm−3 (0.80 ng cm−3) for Ti(IV). The practical applicability of the proposed method was checked using river and tap water samples.  相似文献   

12.
A series of selected pyromorphite minerals Pb5(PO4)3Cl from different Australian localities has been studied by Raman spectroscopy complemented with selected infrared spectroscopy. The Raman spectrum of unsubstituted pyromorphite shows a single band at around 920 cm−1 but for the natural minerals two bands at 919 and ∼932 cm−1 attributed to the ν1 (PO4)3− stretching vibration. The observation of multiple bands is attributed to the non-equivalence of phosphate units in the pyromorphite structure and the reduction in symmetry of the (PO4)3− units. This symmetry reduction is confirmed by the observation of multiple bands in both the ν4 bending region (500–595 cm−1) and the ν2 bending region (350–500 cm−1). The presence of isomorphic substitution of (PO4)3− by (AsO4)3− units is identified by the ν1 symmetric stretching bands at around 824 and 851 cm−1 and the ν2 bending region around 331 and 354 cm−1. Contrary to expectation Raman bands in the 3320–3700 cm−1 region are observed and assigned to OH stretching bands of OH units resulting from the substitution of chloride anions in the pyromorphite structure. This study brings in to question the actual formula of natural pyromorphite as it is better represented as Pb5(PO4,AsO4)3(Cl,OH) · xH2O.  相似文献   

13.
A straight forward room-temperature synthesis of V(III) containing complex fluoride K3VF6, using KF and vanadium(III) acetylacetonate is reported. The pale green colored powder was characterized by chemical analysis, powder X-ray diffraction; diffuse reflectance spectroscopy, infrared spectroscopy, Raman spectroscopy, differential scanning calorimetry, scanning electron microscopy, photoluminescence spectroscopy, magnetic susceptibility measurements and photoluminescence spectroscopy. The powder X-ray diffraction pattern was fitted in P21/n space group (monoclinic) with a = 12.106 (1) Å, b = 17.685 (0) Å, c = 11.802 (0) Å, β = 92.23° (1). Differential scanning calorimetry showed phase transitions, occurring at 158 °C and 190 °C. In the FT-IR spectrum, characteristic band for the VF63− group was observed at 508 cm−1. The bands observed in the 335-361 cm−1 region and at 504 cm−1 in the room temperature Raman spectrum of K3VF6 corresponded to the F2g and A1g modes, respectively. The ratio of the frequencies (F2g/A1g) observed in the diffuse reflectance spectrum was fitted on the Tanabe-Sugano diagram to determine the Racah parameter B value of 712 cm−1. Magnetic ordering was not observed down to the lowest measured temperature of 5 K.  相似文献   

14.
《Chemical physics》1986,102(3):305-312
In this paper, we report on absolute fluorescence quantum yields from photoselected vibrational states of jet-cooled 1,4-diphenylbutadiene for excess vibrational energies, Ev = 0−7500 cm−1, above the apparent electronic origin of the S1(2Ag) state. The pure radiative lifetimes, τr, of the strongly scrambled S2(1Bu)—S1(2Ag) molecular eigenstates (Ev = 1050−1800 cm−1) show a marked dilution effect, (τrr(S2) ≈ 40), being practically identical with the τr values from the S1(2Ag) manifold (Ev = 0–900 cm−1), which is affected by near-resonant vibronic coupling to S2(1Bu) and exhibiting the dynamic manifestations of the intermediate level structure. Isomerization rates in the isolated molecule, which do not exhibit vibrational mode selectivity, were recorded over the energy range 0–6600 cm−1 above the threshold.  相似文献   

15.
A new organically templated fluoro-phosphite gallium(III)-doped chromium(III) with formula (C2H10N2)[Ga0.98Cr0.02(HPO3)F3] has been synthesized by using mild hydrothermal conditions under autogeneous pressure. The crystal structure has been solved from X-ray single-crystal data. The compound crystallizes in the P212121 orthorhombic space group, with the unit-cell parameters a=12.9417(7) Å, b=9.4027(6) Å, c=6.3502(4) Å and Z=4. The final R factors were R1=0.022 (all data) and wR2=0.050. The crystal structure consists of [Ga0.98Cr0.02(HPO3)F3]2− anionic chains extended along the c-axis, with the ethylenediammonium cations placed in the cavities of the structure delimited by three different chains. The IR and Raman spectra show the characteristic bands of the phosphite oxoanion. The diffuse reflectance spectroscopy allowed us to calculate the Dq and Racah parameters of the Cr(III) cations in octahedral environment. The values are Dq=1375 cm−1, B=780 cm−1 and C=3420 cm−1. The polycrystalline ESR spectra performed at X and Q-bands show the signals belonging to the diluted Cr(III) cation in this phase. From the fit of the X-band ESR spectrum at 4.2 K, the calculated values of the axial (D) and rhombic (E) distortion parameters are 0.075 and 0.042 cm−1, respectively, the components of the g-tensor being gx=1.98, gy=1.99 and gz=1.90.  相似文献   

16.
17.
The effect of UV light on Weiss temperature and ESR spectra in 1-isopropyl-3, 3, 5′, 6′-tetramethylspiro[indolin-2,2′-[2H]pyrano[3,2-b]pyridinium] tris(oxalato)chromate (III) (Sp3Cr(C2O4)3) has been found. Additional line has been observed in the ESR spectra of irradiated samples in “strong” magnetic fields of ~15 kOe. The analysis of angular dependences of the ESR spectra allowed a contribution of Cr3+ ions to magnetic properties of Sp3Cr(C2O4)3 to be determined. The zero-field splitting parameters D=0.619 cm−1, E=0.024 cm−1 were derived from the experimental data. The parameters were typical for Cr3+ in the chromium oxalate. Weiss temperature changed sign from 25 to −25 K under UV irradiation. The value of Weiss temperature and its changing cannot be explained by exchange interaction, dipole-dipole interaction or the effect of crystal field. The existence of Weiss temperature is explained by the changes in amount and spin of paramagnetic particles. The change is due to thermoactivated redistribution of electrons between chromium ions and spiropyrane molecules. Light-induced transfer of electrons is also explaining the change in sign of Weiss temperature under UV irradiation.  相似文献   

18.
The azopyrimidine and azoimidazole ligands (general abbreviations, RL) used in the present work are 2-(p-R-C6H4NN)C4H3N2, RLpm (R=H, Cl) and 2-(p-R-C6H4NN)-1-(Me)C3H2N2, RLim (R=Me, Cl), respectively. The reaction of Re(CO)5Cl with a slight excess of RL in boiling benzene has furnished blue-violet complexes of type Re(CO)3Cl(RL) which have been spectrally characterized. In Re(CO)3Cl(HLpm) and Re(CO)3Cl(ClLim) the Re-Nh, Re-Na distances are 2.173(6), 2.136(6) Å and 2.150(5), 2.166(5) Å, respectively (Nh and Na are heterocyclic and azo N atoms, respectively). Their N-N lengths (1.271(8), 1.281(7) Å) implicate relatively weak Re-azo(π*) back-bonding. In the lattice of Re(CO)3Cl(HLpm), pair-wise C-H?O hydrogen bonding between symmetry related molecules is present (C?O; 3.264(9) Å, H?O; 2.460(10) Å; C-H?O; 130.6(5)°). The lattice of Re(CO)3Cl(ClLim) also consists of centrosymmetric dimers held by aromatic π-π stacking between parallely placed pendant aryl rings (centroid?centroid distance, 3.781(9) Å). Extended Hückel calculations reveal that the LUMO of Re(CO)3Cl(RL) is ∼60% azo in character. One-electron quasireversible electrochemical reduction occurs near −0.1 and −0.4 V vs. SCE in the cases of Re(CO)3Cl(RLpm) and Re(CO)3Cl(RLim), respectively. The redox orbital is believed to be to the above noted LUMO. Electrogenerated Re(CO)3Cl(RL) underwent spontaneous solvolytic chloride displacement in MeCN furnishing Re(CO)3(MeCN)(RL) which has been isolated. The latter in turn reacted with imidazole and triphenyl phosphine furnishing Re(CO)3(C3H4N2)(RL) and Re(CO)3(PPh3)(RL), respectively. The pattern of carbonyl stretching frequencies of these radical anion complexes is similar to that of Re(CO)3Cl(RL) but for shifts to lower frequencies by 10-40 cm−1. All the three radical anion systems are one-electron paramagnets (1.7-1.8 μB). The unpaired electron is primarily localized in a predominantly azo-π* orbital. A small metal contribution (185, 187Re, I=5/2) is present and both Re(CO)3(MeCN)(RL) and Re(CO)3(C3H4N2)(RL) display six-line EPR spectra (A∼28 G). The line shapes and intensities are characteristic of the presence of g-strain. In the case of Re(CO)3(PPh3)(RL) seven nearly equispaced lines are observed due to virtually equal coupling with metal and 31P (I=1/2) nuclei. The g values of the radical species span the range 2.0033-2.0066.  相似文献   

19.
Srilankite-type zirconium titanate, a promising structure for ceramic pigments, was synthesized at 1400 °C following three main doping strategies: (a) ZrTi1−xAxO4, (b) ZrTi1−xyAxByO4 and (c) Zr1−xCxTiO4 where A=Co, Cr, Fe, Mn, Ni or V (chromophores), B=Sb or W (counterions) and C=Pr (chromophore); x=y=0.05. Powders were characterized by XRD with Rietveld refinements and DRS in the UV-visible-NIR range; technological properties were appraised in several ceramic matrices (frits, glazes and body). Zirconium titanate can be usefully coloured with first row transition elements, giving green and greenish yellow (Co and Ni); orange-buff (Cr and V); tan-brown hues (Mn and Fe). In industrial-like synthesis conditions, a disordered structure as (Zr,Ti)O2, with both Zr and Ti randomly distributed in the octahedral site, is achieved. Doping with chromophores and counterions induces unit cell dimensions variation and causes an oversaturation in zirconium oxide. Optical spectroscopy reveals the occurrence of Co2+, Cr3+, Fe3+, Mn2+, Mn3+, Ni2+, V3+ and V4+. The zirconium titanate pigments fulfil current technological requirements for low-temperature applications, but exhibit a limited chemico-physical stability for higher firing temperature and in chemically aggressive media.  相似文献   

20.
Polyclonal antibody (PAb) with broad-specificity for O,O-diethyl organophosphorus pesticides (OPs) against a generic hapten, 4-(diethoxyphosphorothioyloxy)benzoic acid, was produced. The obtained PAb showed high sensitivity to seven commonly used O,O-diethyl OPs in a competitive indirect enzyme-linked immunosorbent assay (ciELISA) using a heterologous coating antigen, 4-(3-(diethoxyphosphorothioyloxy)phenylamino)-4-oxobutanoic acid. The 50% inhibition value (IC50) was 348 ng mL−1 for parathion, 13 ng mL−1 for coumaphos, 22 ng mL−1 for quinalphos, 35 ng mL−1 for triazophos, 751 ng mL−1 for phorate, 850 ng mL−1 for dichlofenthion, and 1301 ng mL−1 for phoxim. The limit of detection (LOD) met the ideal detection criteria of all the seven OP residues. A quantitative structure-activity relationship (QSAR) model was constructed to study the mechanism of antibody recognition using multiple linear regression analysis. The results indicated that the frontier-orbital energies (energy of the highest occupied molecular orbital, EHOMO, and energy of the lowest unoccupied molecular orbital, ELUMO) and hydrophobicity (log of the octanol/water partition coefficient, log P) were mainly responsible for the antibody recognition. The linear equation was log(IC50) = −63.274EHOMO + 15.985ELUMO + 0.556 log P − 25.015, with a determination coefficient (r2) of 0.908.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号