首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The (p,ρ,T) and (ps,ρs,Ts) properties of {(1−x)CH3OH + xLiBr} over a wide range of state parameters are reported for the first time. The experiments were carried out in a constant volume piezometer over a temperature range from 298.15 K to 398.15 K, at 0.08421, 0.13617, 0.19692, 0.23133 and 0.26891 mole fractions and from atmospheric pressure up to 60 MPa. The experimental uncertainties are ΔT=±3 mK for temperature, Δp=±5·10−2 MPa for high pressure and Δp=±5·10−4 MPa for atmospheric pressure, Δρ=±3·10−2 kg · m−3 for density. An equation of state was derived for correlation of the experimental data of the solutions.  相似文献   

2.
The rate constants for the reactions of OH radicals with CF3OCHFCF3, and CF3CHFCF3 have been measured over the temperature range 250-430 K. Kinetic measurements have been carried out using the flash photolysis, and laser photolysis methods combined, respectively, with the laser induced fluorescence technique. The influence of impurities in the samples has been investigated by using gas chromatography. No sizable effect of impurities was found on the measured rate constants of these fluorinated compounds, if the purified samples were used in the measurements. The following Arrhenius expressions were determined: k(CF3OCHFCF3) = (4.39 ± 1.38) × 10−13 exp[−(1780 ± 100)/T] cm3 molecule−1 s−1, and k(CF3CHFCF3) = (6.19 ± 2.07) × 10−13 exp[−(1830 ± 100)/T] cm3 molecule−1 s−1.  相似文献   

3.
4.
In this article, we present a systematic study on IgG and Fab fragment of anti-IgG molecules using fluorescence auto- and cross-correlation spectroscopy to investigate their diffusion characteristics, binding kinetics, and the effect of small organic molecule, urea on their binding. Through our analysis, we found that the diffusion coefficient for IgG and Fab fragment of anti-IgG molecules were 37 ± 2 μm2 s−1 and 56 ± 2 μm2 s−1, respectively. From the binding kinetics study, the respective forward (ka) and backward (kd) reaction rates were (5.25 ± 0.25) × 106 M−1 s−1 and 0.08 ± 0.005 s−1, respectively and the corresponding dissociation binding constant (KD) was 15 ± 2 nM. We also found that urea inhibits the binding of these molecules at 4 M concentration due to denaturation.  相似文献   

5.
The hydrogen peroxide-oxidation of o-phenylenediamine (OPD) catalyzed by horseradish peroxidase (HRP) at 37 °C in 50 mM phosphate buffer (pH 7.0) was studied by calorimetry. The apparent molar reaction enthalpy with respect to OPD and hydrogen peroxide were −447 ± 8 kJ mol−1 and −298 ± 9 kJ mol−1, respectively. Oxidation of OPD by H2O2 catalyzed by HRP (1.25 nM) at pH 7.0 and 37 °C follows a ping-pong mechanism. The maximum rate Vmax (0.91 ± 0.05 μM s−1), Michaelis constant for OPD Km,S (51 ± 3 μM), Michaelis constant for hydrogen peroxide Km,H2O2 (136 ± 8 μM), the catalytic constant kcat (364 ± 18 s−1) and the second-order rate constants k+1 = (2.7 ± 0.3) × 106 M−1 s−1 and k+5 = (7.1 ± 0.8) × 106 M−1 s−1 were obtained by the initial rate method.  相似文献   

6.
Hydroboration reactions of 1-octene and 1-hexyne with H2BBr·SMe2 in CH2Cl2 were studied as a function of concentration and temperature, using 11B NMR spectroscopy. The reactions exhibited saturation kinetics. The rate of dissociation of dimethyl sulfide from boron at 25 °C was found to be (7.36 ± 0.59 and 7.32 ± 0.90) × 10−3 s−1 for 1-octene and 1-hexyne, respectively. The second order rate constants, k2, for hydroboration worked out to be 7.00 ± 0.81 M s−1 and 7.03 ± 0.70 M s−1, while the overall composite second order rate constants, k K, were (3.30 ± 0.43 and 3.10 ± 0.37) × 10−2 M s−1, respectively at 25 °C. The entropy and enthalpy values were found to be large and positive for k1, whilst for k2 these were large and negative, with small values for enthalpies. This is indicative of a limiting dissociative (D) for the dissociation of Me2S and associative mechanism (A) for the hydroboration process. The overall activation parameters, ΔH and ΔS, were found to be 98 ± 2 kJ mol−1 and +56 ± 7 J K−1 mol−1 for 1-octene whilst, in the case of 1-hexyne these were found out to be 117 ± 7 kJ mol−1 and +119 ± 24 J K−1 mol−1, respectively. When comparing the kinetic data between H2BBr·SMe2 and HBBr2·SMe2, the results showed that the rate of dissociation of Me2S from H2BBr·SMe2 is on average 34 times faster than it is in the case of HBBr2·SMe2. Similarly, the rate of hydroboration with H2BBr·SMe2 was found to be on average 11 times faster than it is with HBBr2·SMe2. It is also clear that by replacing a hydrogen substituent with a bromine atom in the case of H2BBr·SMe2 the mechanism for the overall process changes from limiting dissociative (D) to interchange associative (Ia).  相似文献   

7.
Ligand exchange reaction of Zn(II)-acetylacetonate complex (Zn-acac2) with 5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonic acid (H2TPPS) has been investigated spectrophotometrically and radiometrically. The exchange reaction was observed by spectral change from H2TPPS to Zn-TPPS or activity of65Zn(acac)2 extracted into the chloroform phase. The 2nd order rate constants (k 2) for the exchange reaction at 70 °C and at pH 7.8 were found to be 32.8±2.3 and 31.2±3.2 M–1·s–1 from the spectrometric and radiotracer experiments, respectively. For the direct complexation of Zn(II) with H2TPPS, a similar 2nd order rate constant (k=32.4±4.7 M–1·s–1) was obtained as that in the ligand exchange reaction. The activation energies (E) for the exchange and the formation of Zn-TPPS were found to be 69.3±0.2 and 69.4±0.2 kJ·mol–1, respectively, in the temperature range from 40 to 70 °C.  相似文献   

8.
The oxidation of a series of substituted pyridines by dimethyldioxirane (1) produced the expected N-oxides in quantitative yields. The second order rate constants (k2) for the oxidation of a series of substituted pyridines (2a-g) by dimethyldioxirane were determined in dried acetone at 23 °C. An excellent correlation with Hammett sigma values was found (ρ = −2.91, r = 0.995). Kinetic studies for the oxidation of 4-trifluoromethylpyridine by 1 were carried out in the following dried solvent systems: acetone (k2 = 0.017 M−1 s−1), carbon tetrachloride/acetone (7:3; k2 = 0.014 M−1 s−1), acetonitrile/acetone (7:3; k2 = 0.047 M−1 s−1), and methanol/acetone (7:3; k2 = 0.68 M−1 s−1). Kinetic studies of the oxidation of pyridine by 1 versus mole fraction of water in acetone [k2 = 0.78 M−1 s−1 (χ = 0) to k2 = 11.1 M−1 s−1 (χ = 0.52)] were carried out. The results showed the reaction to be very sensitive to protic, polar solvents.  相似文献   

9.
Summary Normal and rapid-scan stopped-flow spectrophotometry in the range of 260–300 nm was used to study the kinetics of sulfur(IV) oxidation by peroxo compounds R-OOH (such as hydrogen peroxide, R=H; peroxonitrous acid, R=NO; peroxoacetic acid, R=Ac; peroxomonosulfuric acid, R=SO 3 ) in the pH range 2–6 in buffered aqueous solution at an ionic strength of 0.5 M (NaClO4) or 1.0 M (R=NO; Na2SO4). The kinetics follow a three-term rate law, rate=(kH[H]+kHX[HX]+kp)[HSO 3 ][ROOH] ([H] = proton activity; HX = buffer acid = chloroacetic acid, formic acid, acetic acid, H2PO 4 ). Ionic strength effects (I=0.05–0.5 M) and anion effects (Cl, ClO 4 , SO 4 2– ) were not observed. In addition to proton-catalysis (kH[H]) and general acid catalysis (kHX[HX]), the rate constant kp characterizes, most probably, a water induced reaction channel with kp=kHOH[H2O]. It is found that kHf(R) with kH(mean)=2.1·107 M–2 s–1 at 298 K. The rate constant kHX ranges from 0.85·106 M–2 s–1 (HX=ClCH2–COOH; R=NO; 293 K) to 0.47·104 M–2 s–1 (HX=H2PO 4 ; R=H; 298 K) and the rate constant kp covers the range 0.2·M–1 s–1 (R=H) to 4.0·104 M–1 s–1 (R=NO). LFE relationships can be established for both kHX, correlating with the pKa of HX, and kp, correlating with the pKa of the peroxo compounds R-OOH. These relationships imply interesting aspects concerning the mechanism of sulfur(IV) oxidation and the possible role of peroxonitrous acid in atmospheric chemistry. A UV-spectrum of the unstable peroxo acid ON-OOH is presented.  相似文献   

10.
Absolute rate constants and their temperature dependencies were determined for the addition of hydroxymethyl radicals (CH2OH) to 20 mono- or 1,1-disubstituted alkenes (CH2 = CXY) in methanol by time-resolved electron spin resonance spectroscopy. With the alkene substituents the rate constants at 298 K (k298) vary from 180 M?1s?1 (ethyl vinylether) to 2.1 middot; 106 M?1s?1 (acrolein). The frequency factors obey log A/M?1s?1 = 8.1 ± 0.1, whereas the activation energies (Ea) range from 11.6 kJ/mol (methacrylonitrile) to 35.7 kJ/mol (ethyl vinylether). As shown by good correlations with the alkene electron affinities (EA), log k298/M?1s?1 = 5.57 + 1.53 · EA/eV (R2 = 0.820) and Ea = 15.86 ? 7.38 · EA/eV (R2 = 0.773), hydroxymethyl is a nucleophilic radical, and its addition rates are strongly influenced by polar effects. No apparent correlation was found between Ea or log k298 with the overall reaction enthalpy. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
Crea F  Milea D  Sammartano S 《Talanta》2005,65(1):229-238
In order to analyze the formation of hetero-metal polynuclear hydrolytic species, in this paper, we reported some results of an investigation (at I = 0.16 mol L−1 in NaNO3, at t = 25 °C by potentiometry, ISE-H+, glass electrode) on the hydrolysis of several mixtures (in different ratios) of two couples of cations: dioxouranium(VI)/copper(II) and dioxouranium(VI)/diethyltin(IV). The elevated total concentrations of cations 0.005 ≤ ΣCM mol L−1 ≤ 0.05) adopted in these measurements induced us to study again the hydrolysis of uranyl, for which no suitable literature data are available in these particular experimental conditions. All measurements were performed by two different operators, using completely independent instruments and reagents. Many different speciation models were considered in the calculations, including the simultaneous refinement of homo- and hetero-metal species, and a statistical analysis of obtained results was proposed too. Main results can be summarized as follows: UO22+ and Cu2+ form three hetero-metal polynuclear hydrolytic species [(UO2)Cu(OH)3+, (UO2)Cu2(OH)2+ and (UO2)2Cu4(OH)2+, with log βpqr = −2.93 ± 0.01, −7.34 ± 0.03 and −13.78 ± 0.03, respectively], all those common to their simple speciation without the other cation; UO22+ and (C2H5)2Sn2+ form seven mixed hydrolytic species [(UO2)(DET)(OH)3+, (UO2)(DET)2(OH)2+, (UO2)2(DET)4(OH)2+, (UO2)(DET)24(OH)2+, (UO2)2(DET)+5(OH), (UO2)(DET)2+5(OH) and (UO2)2(DET)7(OH), with log βpqr = −2.5 ± 0.2, −4.74 ± 0.02, −10.70 ± 0.06, −10.34 ± 0.03, −15.70 ± 0.06, −15.58 ± 0.06 and −27.9 ± 0.1, respectively] that are of the same kind of those formed by uranyl; formation of mixed hydrolytic species causes a significant enhancement of the percentage of hydrolyzed metal cations, modifying the solubility and, therefore, the bioavailability of these cations. We also determined, for dioxouranium(VI)/copper(II) system, the corresponding complex formation enthalpies and entropies by direct calorimetric measurements. We obtained ΔH112 = 47.9 ± 0.6 and ΔH214 = 92.9 ± 0.5 kJ mol−1, TΔS112 = 6 ± 1 and TΔS214 = 14 ± 1 kJ mol−1 (±S.D.), respectively, for the formation of (UO2)(Cu)2(OH)2+ and (UO2)2(Cu)4(OH)2+ species (according to reaction 2). We also calculated the single enthalpic and entropic contributes to the extra-stability that these species show with respect to the corresponding homo polynuclear ones.  相似文献   

12.
A novel strapped porphyrin receptor Zn1, in which two electron-rich bis(p-phenylene)-34-crown ether-10 units are incorporated, has been designed and synthesized from the newly developed intermediate 7 for investigating new chemistry of molecular recognition. 1H NMR and UV-Vis studies revealed that Zn1 displays relatively weak binding abilities to neutral electron deficient naphthalene-1,8,4,5-tetracarboxydiimide (NDI) derivatives 13 (no simple complexing stoichiometry was observed), 19 (Ka=48(±5) M−1) and 30 (Ka=46(±5) M−1) in chloroform-d, strong binding ability to pyridine derivative 25, (Ka=1.5(±0.12)×103 M−1) in chloroform, moderately strong binding ability to tetracationic compound 35·4PF6 (Ka=475(±50) M−1) in acetone-d6, and very strong binding affinity to compound 22 (Ka=6.5(±0.7)×105 M−1), which consists of one pyridine and two NDI units, in chloroform. Remarkable cooperative effect of the intermolecular metal-ligand coordination and donor-acceptor interactions in complex Zn1·22 was observed by comparing the complexing behaviors between Zn1 and the appropriately designed guests. Complex Zn1·22 possesses an unique three-dimensional tri-site binding feature. For comparison, the complexing affinity of 1 toward compounds 13, 19, and 30 in chloroform-d and 35·4PF6 in acetone-d6 has also been investigated and the binding patterns in different complexes were explored. The results demonstrate that strapped porphyrin derivatives are ideal precursors for constructing new generation of three-dimensional multi-site artificial receptors for molecular recognition and host-guest chemistry.  相似文献   

13.
A simple procedure was developed to prepare a glassy carbon electrode modified with single-wall carbon nanotubes (SWCNTs) and Os(III)-complex. The glassy carbon (GC) electrode modified with CNTs was immersed into Os(III)-complex solution (direct deposition) for a short period of time (60 s). 1,4,8,12-Tetraazacyclotetradecane osmium(III) chloride, (Os(III)LCl2)·ClO4, irreversibly and strongly adsorbed on SWCNTs immobilized on the surface of GC electrode. Cyclic voltammograms of the Os(III)-complex-incorporated-SWCNTs indicate a pair of well defined and nearly reversible redox couple with surface confined characteristic at wide pH range (1-8). The surface coverage (Γ) and charge transfer rate constant (ks) of the immobilized Os-complex on SWCNTs were 3.07 × 10−9 mol cm−2, 5.5 (±0.2) s−1, 2.94 × 10−9 mol cm−2, 7.3 (±0.3) s−1 at buffer solution with pH 2 and 7, respectively, indicate high loading ability of SWCNTs for Os(III) complex and great facilitation of the electron transfer between electroactive redox center and carbon nanotubes immobilized on the electrode surface. Modified electrodes showed higher electrocatalytic activity toward reduction of BrO3, IO3 and IO4 in acidic solutions. The catalytic rate constants for catalytic reduction bromate, periodate and iodate were 3.79 (±0.2) × 103, 7.32 (±0.2) × 103 and 1.75 (±0.2) × 103 M−1 s −1, respectively. The hydrodynamic amperometry of rotating modified electrode at constant potential (0.3 V) was used for nanomolar detection of selected analytes. Excellent electrochemical reversibility of the redox couple, good reproducibility, high stability, low detection limit, long life time, fast amperometric response time, wide linear concentration range, technical simplicity and possibility of rapid preparation are great advantage of this sensor.  相似文献   

14.
A pyrimethanil-imprinted polymer (P1) was prepared by iniferter-mediated photografting a mixture of methacrylic acid and ethylene dimethacrylate onto homemade near-monodispersed chloromethylated polydivinylbenzene beads. The chromatographic behaviour of a column packed with these imprinted beads was compared with another column packed with irregular particles obtained by grinding a bulk pyrimethanil-imprinted polymer (P2). The comparison was made using the kinetic model of non-linear chromatography, studying the elution of the template and of two related substances, cyprodinil and mepanipyrim. Extension of the region of linearity, capacity factors for the template and the related substances, column selectivity, binding site heterogeneity, apparent affinity constant (K) and lumped kinetic association (ka) and dissociation rate constant (kd) were studied during a large interval of solute concentration, ranging between 1 and 2000 μg/ml. From the experimental results obtained, in the linearity region of solute concentration column selectivity and binding site heterogeneity remained essentially the same for the two columns, while column capacity (at 20 μg/ml, P1 = 23.1, P2 = 11.5), K (at 20 μg/ml, P1 = 8.3 × 106 M−1, P2 = 2.5 × 106 M−1) and ka (at 20 μg/ml, P1 = 3.5 μM−1 s−1, P2 = 0.47 μM−1 s−1) significantly increased and kd (at 20 μg/ml, P1 = 0.42 s−1, P2 = 0.67 s−1) decreased for the column packed with the imprinted beads. These results are consistent with an influence of the polymerisation method on the morphology of the resulting polymer and not on the molecular recognition properties due to the molecular imprinting process.  相似文献   

15.
By self-assembly in aqueous solution, calix- (CAS) and thiacalix[4]arene-p-tetrasulfonate (TCAS) formed luminescent complexes TbIII·(CAS)2 and TbIII·TCAS, respectively, which were utilized as a host for cationic guests. Addition of 1-ethylpyridinium guest quenched luminescence of TbIII·(CAS)2 in accordance with the Stern-Volmer (SV) relation with a low detection limit (D.L.) of 5.94 × 10−8 M (S/N = 3, M ≡ mol dm−3). On the other hand, 1-ethylquinolinium quenched luminescence of TbIII·TCAS most efficiently, affording a very low D.L. (6.71 × 10−10 M). The agreement of the SV coefficients obtained with luminescent intensity (KSV,all = 6.74 × 106 M−1) and lifetime (KSV,Tb = 6.50 × 106 M−1) implied that dynamic quenching of 5D4 excited state of TbIII was predominant in the quenching processes. The quenching rate was estimated to be kq,Tb = 9.94 × 109 M−1 s−1, which was as fast as diffusion-limited rate. Quenching of TbIII·(CAS)2 was also applied to detection of NAD+, with a D.L. of 2.78 × 10−7 M.  相似文献   

16.
The fast reaction technique of pulse radiolysis in conjunction with UV- visible absorption detection was used to determine the rate of reactions of hydrated electron, hydrogen atom, hydroxyl radical and dichloride anion radical with tetraammineplatinum(II) perchlorate and with trans- dihydroxotetraammineplatinum(IV) perchlorate complexes. Generally these reactions proceed at near diffusion-controlled rates. The second-order rate constant for the reaction of e aq , H, OH and Cl 2 radical with the Pt(II) complex are (1.9±0.1)·1010 M–1·s–1, (2.8±0.3)·1010 M–1·s–1, (6.6±0.4)·109 M–1·s–1 and (9±1)·109 M–1·s–1, respectively. The rate constant for the reaction of e aq with the Pt(IV) complex is (4.9±0.3)·1010 M–1·s–1, however, H atom and OH radical reactions proceed at relatively slower rates.  相似文献   

17.
Absolute rate constants for the addition of the 2-hydroxy-2-propyl radical to 18 substituted alkenes (CH2 = CXY) were determined at (296 ± 1) K in 2-propanol by time-resolved electronspin-resonance spectroscopy. With alkene substitution the rate constants vary by more than 6 orders of magnitude. For 3,3-dimethyl-but-1-ene the temperature dependence is given by log k/M?1 · s?1 = 6.4 minus;; 19.1/Θ where Θ = 2.303 RT in kJ/mol?1. As shown by a good correlation with the alkene electron affinities, log k296/M?1 · s?1 = 6.46 + 1.71 · EA/eV (r = 0.930), 2-hydroxy-2-propyl is a very nucleophilic radical, and its addition rates are highly governed by polar effects. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
The polymerization of di-2[2-(2-methoxyethoxy)ethoxy]ethyl itaconate (1) with dimethyl 2,2-azobisisobutyrate (2) was studied, in benzene, kinetically and spectroscopically with the electron paramagnetic resonance (EPR) method. The polymerization rate (R p) at 50°C is given by the equation:R p=k[2]0.48 [1]2.4. The overall activation energy of polymerization was calculated to be 34 kJ·mol–1. From an EPR study, the polymerization system was found to involve EPR-observable propagating polymer radicals of 1 under the actual polymerization conditions. Using the polymer radical concentration, the rate constants of propagation (k p) and termination (k t) were determined. With increasing monomer concentration,k p(1.54.3 L·mol–1·s–1 at 50°C) increases andk t (1.0·1044.2·104 L·mol–1·s–1 at 50°C) decreases, which seems responsible for the high dependence ofR p on the monomer concentration. The activation energies of propagation and termination were calculated to be 11 kJ·mol–1 and 84 kJ·mol–1, respectively. For the copolymerization of 1(M 1) and styrene (M 2) at 50°C in benzene the following copolymerization parameters were found:r 1=0.2,r 2=0.53, Q1=0.57, ande 1=+0.7.  相似文献   

19.
The determination of pKa value for the unstable chromium(VI) peroxide, CrO(O2)2(H2O) in aqueous solution is presented. The pKa value is found to be (1.55 ± 0.03). The kinetic decomposition of chromium(VI) peroxide is dependent on the concentration of hydrogen peroxide in the pH range between 2.5 and 4.0. We have proposed the possible explanation for the formation of triperoxo chromium complex of hydrogen peroxide which is dependent on decomposition. Activation of coordinate peroxide in chromium(VI) peroxide observed in the kinetic studies is by reduction of thiolato-cobalt(III) complex. The rate constant (M−1 s−1, 15 °C) for the oxygen atom transfer reaction from CrO(O2)2(OH) to (en)2Co(SCH2CH2NH2)2+ is found to be (25.0 ± 1.3).  相似文献   

20.
The kinetics of the decomposition of acetyl-cyclo-hexylsulfonylperoxide (SP, RS(O2)OOC(O)CH3, R = cyclo-C6H11) was studied in a C6H4Cl2 solution in an O2 atmosphere at 323–353 K and in an Ar atmosphere at 323–343 K. The rate constants of SP monomolecular decomposition (k 1) and SP reaction with CH3 · radicals (k 3) were determined. The temperature dependences of these rate constants are described by equations log k 1 = (14.5 ± 2.9) – (115.4 ± 19.0) – (2.3RT) and log k 3= (11.6 ± 2.2) – (44.6 ± 14.2)/(2.3RT), where the activation energies are expressed in kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号