首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the experimental data of Hugoniot longitudinal sound velocity VL for natural (Mg0.92,Fe0.08)SiO3 enstatite sample at about 40-140 GPa, consisting of three new data and five previously reported data but revised by our new Hugoniot equation of state parameters. Three segments, separated by two discontinuities, appear in the VL-PH (shock pressure) plot. Analyses show that the first discontinuity at about 64 GPa, with a sharp increase of VL of about 21%, is judged to be a phase transition from enstatite to Pbnm perovskite (PV); while the second one at about 83 GPa, with a dramatic decrease of VL of about 23%, is likely caused by a subtle structural change from Pbnm PV to tetragonal PV, accompanied by material strength softening due to melting of oxygen sublattices. This strength softening evidence is obtained first from shock wave experiments, and probably has profound implications for probing into the origin of low seismic velocity anomaly in the Earth's lower mantle and thus constraining the geophysical and geochemical models for the Earth's lower mantle.  相似文献   

2.
潘跃武  朱品文  王欣 《中国物理 B》2015,24(1):17503-017503
Double perovskite oxide Sr2Co Fe O6(SCFO)has been obtained using a high-pressure and high-temperature(HPHT)synthesis method.Valence states of Fe and Co and their distributions in SCFO were examined with X-ray photoelectron spectroscopy.The electric transport behavior of SCFO showed a semiconductor behavior that can be well described by Mott’s law for variable-range hopping conduction.The structural stability of SCFO was investigated at pressures up to 31GPa with no pressure-induced phase transition found.Bulk modulus B0was determined to be 163(2)GPa by fitting the pressure–volume data to the Birch–Murnaghan equation of state.  相似文献   

3.
Pressure-induced phase transition of cubic Eu2 03 is studied by angle-dispersive x-ray diffraction (ADXD) up to 42.3 GPa at room temperature. A structural transformation from a cubic phase to a hexagonal phase is observed, which starts at 5.0 GPa and finishes at about 13.1 GPa. The phase transition leads to a volume collapse of 9.0% at 8.6 GPa. The hexagonal phase of Eu2 03 maintains stable up to the highest experiment pressure. After re/ease of pressure, the high-pressure phase transforms to a monoclinic phase. The pressure-volume data are fitted with the Birch-Murnaghan equation of state. The bulk moduli obtained upon compression from the fitting are 145(2) GPa and 151(6) OPa for the cubic and hexagonal phases, respectively, when their first pressure derivatives are fixed at 4.  相似文献   

4.
Ferromagnetic transition has generally been considered to involve only an ordering of magnetic moment with no change in the host crystal structure or symmetry, as evidenced by a wealth of crystal structure data from conventional X-ray diffractometry (XRD). However, the existence of magnetostriction in all known ferromagnetic systems indicates that the magnetic moment is coupled to the crystal lattice; hence there is a possibility that magnetic ordering may cause a change in crystal structure. With the development of high-resolution synchrotron XRD, more and more magnetic transitions have been found to be accompanied by simultaneous structural changes. In this article, we review our recent progress in understand- ing the structural change at a ferromagnetic transition, including synchrotron XRD evidence of structural changes at the ferromagnetic transition, a phenomenological theory of crystal structure changes accompanying ferromagnetic transitions, new insight into magnetic morphotropic phase boundaries (MPB) and so on. Two intriguing implications of non-centric symmetry in the ferromagnetic phase and the first-order nature of ferromagnetic transition are also discussed here. In short, this review is intended to give a self-consistent and logical account of structural change occurring simultaneously with a ferromagnetic transition, which may provide new insight for developing highly magneto-responsive materials.  相似文献   

5.
The structural stability and elastic properties of wurtzite thallium nitride (TIN) under hydrostatic pressure are studied for the first time by first-principles calculations. The enthalpy calculations predict that TIN undergoes a phase transition from the wurtzite structure to the rocksalt structure at 19.2 GPa with a volume collapse of 13.0%. Our calculated results also show that this nitride is ductile in nature and exhibits high elastic anisotropy. Our ground-state results are in good agreement with the data of other theoretical calculations.  相似文献   

6.
The electrical transport properties and structures of Y2 O3/ZrO2 solid solution have been studied under high pressure up to 23.2 GPa by means of in situ impedance spectroscopy and x-ray diffraction(XRD) measurements.In the impedance spectra, it can be found that the pressure-dependent resistance of Y2 O3/ZrO2 presents two different change trends before and after 13.3 GPa, but the crystal symmetry still remains stable in the cubic structure revealed by the XRD measurement and Rietveld refinement.The pressure dependence of the lattice constant and unit cell volume shows that the Y2 O3/ZrO2 solid solution undergoes an isostructural phase transition at 13.1 GPa, which is responsible for the abnormal change in resistance.By fitting the volume data with the Birch–Murnaghan equation of state, we found that the bulk modulus B0 of the Y2 O3/ZrO2 solid solution increases by 131.9% from 125.2 GPa to 290.3 GPa due to the pressure-induced isostructural phase transition.  相似文献   

7.
This study gives our calculation for the specific heats CVI due to an Ising model using the observed Cp data for the Ⅱ-Ⅲ and Ⅱ-VI phase transitions in NH4I.By fitting to the CP data we determine the values of the critical exponent for the pressure of 0.14GPa(Ⅱ-Ⅲ phase transition)and for the pressures of 0.75,1.35and 1.97 GPa (II-IV phase transition)in NH4I.Our exponent values values are close to the predicted values of the specific heat in a three-dimensional Ising model.Our calculated CVI are in good agreement with the experimental CP for NH4I in most cases.  相似文献   

8.
The structural phase transition, strength, and texture of vanadium have been studied under nonhydrostatic compression up to 70 GPa using an angle-dispersive radial x-ray diffraction technique in a 2-fold paranomic diamond anvil cell and up to 38 GPa using an angle-dispersive x-ray diffraction technique in a modified Mao–Bell diamond anvil cell at room temperature. We have confirmed a phase transition from body-centered cubic structure to rhombohedral structure at 27–32 GPa under nonhydrostatic compression. The radial x-ray diffraction data yields a bulk modulus K_0= 141(5) GPa and its pressure derivative K_0′= 5.4(7) for the bcc phase and K_0= 154(13) GPa with K_0′= 3.8(3) for the rhombohedral phase at ψ = 54.7°. The nonhydrostatic x-ray diffraction data of both bcc and rhombohedral phases yields a bulk modulus K_0= 188(5) GPa with K_0′= 2.1(3). Combined with the independent constraints on the high-pressure shear modulus, it is found that the vanadium sample can support a differential stress of ~1.6 GPa when it starts to yield with plastic deformation at ~36 GPa. A maximum differential stress as high as ~ 1.7 GPa can be supported by vanadium at the pressure of ~ 47 GPa.In addition, we have investigated the texture up to 70 GPa using the software package MAUD. It is convinced that the bodycentered cubic to rhombohedral phase transition and plastic deformation due to stress under high pressures are responsible for the development of texture.  相似文献   

9.
A method based on the measurement of Fe average atomic magnetic moment to identify the structural transition caused by the increase of Ga content in quenched Fe 1-x Ga x alloys (0.15 ≤ x ≤ 0.30) is proposed.The quenched Fe 1-x Ga x alloys show a change of the Fe average atomic magnetic moment from 2.25μ B to 1.78μ B and then to 1.58μ B,which corresponds to the structural transition from A2 to D0 3 and then to B2.The relationship between the structure and the magnetostriction is clarified,and the maximum magnetostriction appears in the A2 phase.The variation tendency of the magnetostriction is well characterized,which also reflects the structural transition.  相似文献   

10.
Electrical properties of stoichiometric iron sulfide (FeS) are investigated under high pressure with a designed diamond anvil cell. The process of phase transition is reflected by changing the electrical conductivity under high pressure, and the conductivity of FeS with the NiAs structure is found to be much smaller than other phases. Two new phase transitions without structural change are observed at 34.7 GPa and 61.3 GPa. The temperature dependence of the conductivity is found to be similar to that of a semiconductor when the pressure is higher than 35 GPa  相似文献   

11.
An investigation of structural stabilities, electronic and optical properties of SrF2 under high pressure is conducted using a first-principles calculation based on density functional theory (DFT) with the plane wave basis set as implemented in the CASTEP code. Our results predict that the second high-pressure phase of SrF2 is of a Ni2In- type structure, and demonstrate that the sequence of the pressure-induced phase transition of SrF2 is the fluorite structure (Fm3m) to the PbC12-type structure (Pnma), and to the Ni2In-type phase (P63/mmc). The first and second phase transition pressures are 5. 77 and 45.58 GPa, respectively. The energy gap increases initially with pressure in the Fm3m, and begins to decrease in the Pnma phases at 30 GPa. The band gap overlap metallization does not occur up to 210 GPa. The pressure effect on the optical properties is discussed.  相似文献   

12.
High pressure structural phase transition of monoclinic paraotwayite type α-Ni(OH)_2 nanowires with a diameter of15 nm–20 nm and a length of several micrometers were studied by synchrotron x-ray diffraction(XRD) and Raman spectra.It is found that the α-Ni(OH)_2 nanowires experience an isostructural phase transition associated with the amorphization of the H-sublattice of hydroxide in the interlayer spaces of the two-dimensional crystal structure at 6.3 GPa–9.3 GPa. We suggest that the isostructural phase transition can be attributed to the amorphization of the H-sublattice. The bulk moduli for the low pressure phase and the high pressure phase are 41.2(4.2) GPa and 94.4(5.6) GPa, respectively. Both the pressure-induced isostructural phase transition and the amorphization of the H-sublattice in the α-Ni(OH)_2 nanowires are reversible upon decompression. Our results show that the foreign anions intercalated between the α-Ni(OH)_2 layers play important roles in their structural phase transition.  相似文献   

13.
Measurements of free surface velocity profiles of high-purity Zr samples under shock-wave loading are performed to study the dynamic strength and phase transition parameters. The peak pressure of the compression waves is within the range from 9 to 14 GPa, and the Hugoniot elastic limit is 0.5 GPa. An anomalous structure of shock waves is observed due to the α - ω phase transition in Zr. Shock pressure has effects on transition pressure which increases with increasing compression strength, and the stronger shocks have a lower transit time.  相似文献   

14.
The unit cell volume and phase transition temperature of LaFe11.4Al1.6Cx compounds have been studied. The magnetic entropy change, refrigerant capacity and the type of magnetic phase transition are investigated in detail for LaFe11.4Al1.6Cx with x=0.1, All the LaFe11.4Al1.6Cx (x=0-0.8) compounds have the cubic NaZn13-type structure. The addition of carbon atoms brings about a considerable increase in the lattice parameter. The bulk expansion results in the change of phase transition temperature (Tc), Tc increases from 187K to 269 K with x varying from 0.1 to 0.8, Meanwhile an increase in the lattice parameter can also cause a change of the magnetic ground state from antiferromagnetic to ferromagnetic. Large magnetic entropy change IASI is found over a large temperature range around Tc and the refrigerant capacity is about 322J/kg for LaFe11.4Al1.6C0.1. The magnetic phase transition belongs in weakly first-order one for x=0.1.  相似文献   

15.
We investigate the phase transition of the pair contact process (PCP) model in a fragmented network. The network is formed by rewiring the link between two nearest neighbors to another randomly selected site in one dimension with a probability q. When the average degree (k〉 = 2, the system exhibits a structure transition and the lattice is fragmented into several isolated subgraphs, it is shown that a giant cluster appears and its node fraction does not change nearly for q 〉 0. Furthermore, it is found that the critical behavior of the continuous phase transition for the PCP model is different from the directed percolation (DP) class and the estimated values of the critical exponents are independent of the rewiring probability for q 〉 0. We conjecture that the structure transition for (k) = 2 takes an important role in the change of the critical behavior of the continuous phase transition.  相似文献   

16.
The thermoelastic properties of CaO over a wide range of pressure and temperature are studied using density functional theory in the generalized gradient approximation. The transition pressure taken from the enthalpy calculations is 66.7GPa for CaO, which accords with the experimental result very well. The athermal elastic moduli of the two phases of CaO are calculated as a function of pressure up to 200GPa. The calculated results are in excellent agreement with existing experimental data at ambient pressure and compared favourably with other pseudopotential predictions over the pressure regime studied. It is also found that the degree of the anisotropy rapidly decreases with pressure increasing in the B1 phase, whereas it strongly increases as the pressure increases in the B2 phase. The thermodynamic properties of the B1 phase of CaO are predicted using the quasi-harmonic Debye model; the heat capacity and entropy are consistent with other previous results at zero pressure.  相似文献   

17.
Effects of Nd-doping on the magnetic properties and magnetocaloric effects (MCEs) of NdxLa1-xFe11.5Al1.5 have been investigated. Substitution of Nd leads to a weakening of the antiferromagnetic (AFM) coupling and an enhancement of the ferromagnetic (FM) coupling. This in turn results in a complex magnetic behaviour for Nd0.2La0.8Fe11.5Al1.5 characterized by the occurrence of two phase transitions at ~188 K (PM AFM) and ~159 K (AFM-FM). As a result, a table-like MCE (9 J/kg.K) is found in a wide temperature range (160-185 K) for a field change of 0-5T around the transition temperature, as evidenced by both the magnetic and calorimetric measurements. Based on the analysis of low-temperature heat capacity, it is found that the AFM-FM phase transition modifies the electron density significantly, and the major contribution to the entropy change comes from the electronic entropy change.  相似文献   

18.
A systematic study of the Hugoniot equation of state, phase transition, and the other thermodynamic properties including the Hugoniot temperature, the electronic and ionic heat capacities, and the Gruneisen parameter for shockcompressed BeO, has been carried out by calculating the total free energy. The method of calculations combines first-principles treatment for 0 K and finite-T electronic contribution and the mean-field-potential approach for the vibrational contribution of the lattice ion to the total energy. Our calculated Hugoniot is in good agreement with the experimental data.  相似文献   

19.
We use a diamond anvil cell for the first time to investigate the Raman spectra of an aqueous micellar solution of hexadecyltrimethylammonium bromide (CTAB) at pressures up to 3.85 GPa. The pressure-induced phase transition between the micellar and coagel phases is found to occur at 0.64 GPa and 60℃. This phase transition has a pressure hysteresis, and thus exhibits the first-order phase transition properties. Further experimental results show that although the structure of the coagel phase is similar to that of the CTAB crystal, the interchain distance is slightly larger in the coagel phase than that in the CTAB crystal.  相似文献   

20.
The magnetic properties and the magnetic entropy change AS have been investigated for Gd6Co1.67Si3 compounds with a second-order phase transition. The saturation moment at 5 K and the Curie temperature TC are 38.1μB and 298 K, respectively. The AS originates from a reversible second-order magnetic transition around TC and its value reaches 5.2 J/kg.K for a magnetic field change from 0 to 5T. The refrigerant capacity (RC) of Gd6Co1.67Si3 are calculated by using the methods given in Refs.[12] and [21], respectively, for a field change of 0 5T and its values are 310 and 440 J/kg, which is larger than those of some magnetocaloric materials with a first-order phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号