首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical characteristics of the modified electrodes with ferrocenecarboxylate-coupled aminoundecylthiol monolayers prepared in two sequential steps were studied. The self-assembled monolayer (SAM) was prepared through the covalent attachment of ferrocenecarboxylate in an activation solution containing N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide coupling agent to aminoundecylthiol SAMs formed on a substrate. In the ferrocenecarboxylate-coupled aminoundecylthiol monolayers, the ferrocene moieties were expected to be packed regularly with enhanced ordering compared with those in the FcCOO(CH2)11SH monolayer. As the ferrocene coverage increases, the formal potential for the ferrocene-ferricenium (Fc/Fc+) couple shifts to the positive potential and the full width at half-maximum (deltaE(fwhm)) increases also. The maximum coverage is found to be about 3 x 10(-10) mol cm(-2), which is considered to be a value obtained from a well-ordered ferrocene-tethered SAM. As for the mass change, the increase in ferrocene coverage caused the enhancement in ion association between the ferricenium cations and perchlorate anions resulting in a mass increase upon oxidation; however, the mass change per mole electron decreases. The results obtained from the ferrocenecarboxylate-coupled aminoundecylthiol monolayers were explained to be due to the well-ordered packing with regular spacing compared with those of the FcCOO(CH2)11SH monolayer.  相似文献   

2.
The passivating behavior of self-assembled monolayers (SAMs) of octadecyltrichlorosilane (OTS) on an n-type Si(100) electrode with and without a redox species like ferrocene in a polar non-aqueous medium has been investigated using techniques like contact angle measurements, Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) to understand the role of the monolayer. The electron-transfer behavior of ferrocene is found to be drastically affected by the presence of monolayer and the reasons for these are analyzed as a function of the change in resistance, dielectric thickness and coverage of the monolayer. Electrochemical impedance analysis in the presence of ferrocene gives the monolayer coverage as 0.998 and the apparent rate constant calculated from this gives 4.85 x 10(-12) cm s(-1) in comparison with 4.4 x 10(-8) cm s(-1) for a similar electrode without any monolayer. A positive shift of 200 mV in the flat-band potential after monolayer formation also suggests the covalent coupling of the silane monolayer offering a protective barrier.  相似文献   

3.
Tetrathiafulvalene (TTF) monolayers covalently bound to oxide-free hydrogen-terminated Si(100) surfaces have been prepared from the hydrosilylation reaction involving a TTF-terminated ethyne derivative. FTIR spectroscopy characterization using similarly modified porous Si(100) substrates revealed the presence of vibration bands assigned to the immobilized TTF rings and the Si-C═C- interfacial bonds. Cyclic voltammetry measurements showed the presence of two reversible one-electron systems ascribed to TTF/TTF(.+) and TTF(.+)/TTF(2+) redox couples at ca. 0.40 and 0.75 V vs SCE, respectively, which compare well with the values determined for the electroactive molecule in solution. The amount of immobilized TTF units could be varied in the range from 1.7 × 10(-10) to 5.2 × 10(-10) mol cm(-2) by diluting the TTF-terminated chains with inert n-decenyl chains. The highest coverage obtained for the single-component monolayer is consistent with a densely packed TTF monolayer.  相似文献   

4.
Electrochemically enhanced DNA detection was demonstrated by utilizing the couple of a synthesized ferrocene-terminated peptide nucleic acid (PNA) with a cysteine anchor and a sacrificial electron donor [Fe(CN)(6)](4-). DNA detection sensors were prepared by modifying a gold electrode surface with a mixed monolayer of the probe PNA and 11-hydroxy-1-undecanethiol (11-HUT), protecting [Fe(CN)(6)](4-) from any unexpected redox reaction. Before hybridization, the terminal ferrocene moiety of the probe was subject to a redox reaction due to the flexible probe structure and, in the presence of [Fe(CN)(6)](4-), the observed current was amplified based on regeneration of the ferrocene moiety. Hybridization decreased the redox current of the ferrocene. This occurred because hybridization rigidified the probe structure: the ferrocene moiety was then removed from the electrode surface, and the redox reaction of [Fe(CN)(6)](4-) was again prevented. The change in the anodic current before and after hybridization was enhanced 1.75-fold by using the electron donor [Fe(CN)(6)](4-). Sequence-specific detection of the complementary target DNA was also demonstrated.  相似文献   

5.
Monolayers of beta-cyclodextrin host molecules have been prepared on SiO2 surfaces. An ordered and stable cyano-terminated monolayer was modified in three consecutive surface reactions. First, the cyanide groups were reduced to their corresponding free amines using Red Al as a reducing agent. Second, 1,4-phenylene diisothiocyanate was used to react with the amine monolayer where it acts as a linking molecule, exposing isothiocyanates that can be derivatized further. Finally, per-6-amino beta-cyclodextrin was reacted with these isothiocyanate functions to yield a monolayer exposing beta-cyclodextrin. All monolayers were characterized by contact angle measurements, ellipsometric thickness measurements, Brewster angle Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry, which indicate the formation of a densely packed cyclodextrin surface. It was demonstrated that the beta-cyclodextrin monolayer could bind suitable guest molecules in a reversible manner. A fluorescent molecule (1), equipped with two adamantyl groups for complexation, was adsorbed onto the host monolayer from solution to form a monolayer of guest molecules. Subsequently, the guest molecules were desorbed from the surface by competition with increasing beta-cyclodextrin concentration in solution. The data were fitted using a model. An intrinsic binding constant of 3.3 +/- 1 x 10(5) M(-1) was obtained, which corresponds well to previously obtained results with a divalent guest molecule on beta-cyclodextrin monolayers on gold. In addition, the number of guest molecules bound to the host surface was determined, and a surface coverage of ca. 30% was found.  相似文献   

6.
合成了一种头基为二茂铁基团的长链烯烃分子(Fc-CO-NH-(CH2)9-CH=CH2) (FcUA),并用红外、核磁、质谱等手段对其进行了表征。用微波引发将该化合物嫁接到平面硅的表面,并用X射线光电子能谱、反射红外光谱、原子力显微镜表征了这一过程。最后,通过循环伏安电化学法和电敏感原子力显微镜的导电模式对其进行电学性质测试。结果表明这层单分子膜可以提高硅片的介电常数。同时还观察到了一种不稳定的类似负微分电流现象。  相似文献   

7.
In this work, octadecanethiol (ODT) was demonstrated to form ordered monolayers at either electrochemically reduced or oxidized Zn surfaces, by means of sum frequency generation (SFG) spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The SFG spectra of ODT-modified Zn electrodes featured three methyl group resonances in the C-H vibrational region (2800-3100 cm(-1)). A significant decrease in interfacial capacitance and an increase in charge-transfer resistance were observed in EIS measurement after ODT modification. The alkane chain tilt angle of ODT within a monolayer at the Zn surface was estimated as 0 degrees with respect to the surface normal by interfacial capacitance measurement via EIS. CV and SFG investigation revealed that ODT monolayers undergo reductive desorption from the Zn electrode in 0.5 M NaOH at -1.66 V (vs SCE) and in 0.5 M NaClO4 at -1.62 V. The integrated charge consumed to the desorption of ODT is determined as 87 mC/cm2 from the reductive peak on CV curve, resulting in a coverage of 9.0 x 10(-10) mol/cm2 (5.4 x 10(14) molecules/cm2) if assuming the reduction follows a one-electron process. ODT monolayers show corrosion protection to underlying zinc at the early immersion stage in base, salt, and acid media. However, the protection efficiency was reduced with immersion time due to the presence of defects within the monolayers.  相似文献   

8.
Molecular monolayers of immunoglobulins bearing terminally attached ferrocene poly(ethylene glycol) chains (IgG-PEG-Fc) were self-assembled at an electrode surface in a step-by-step manner involving antigen-antibody recognition reactions. The total number N of assembled IgG-PEG-Fc monolayers and the number of spacers n(i) separating two successive IgG-PEG-Fc monolayers were controlled and varied. Electron transport through the protein assembly involves the dynamics of the terminally attached PEG chains and isotopic electron exchange between ferrocene heads belonging to successive IgG-PEG-Fc monolayers. The model of elastic bounded diffusion enabled us to analyze quantitatively the dependence of the rate of electron transport on N, n(i), and the rate constant (k(e)) of isotopic electron exchange. Wiring of a molecular monolayer of redox enzyme is also quantitatively characterized.  相似文献   

9.
The electronic properties of various transparent conducting oxide (TCO) surfaces are probed electrochemically via self-assembled monolayers (SAMs). A novel graftable probe molecule having a tethered trichlorosilyl group and a redox-active ferrocenyl functionality (Fc(CH2) 4SiCl3) is synthesized for this purpose. This molecule can be self-assembled via covalent bonds to form monolayers on various TCO surfaces. On as-received ITO, saturation coverage of 6.6 x 10(-10) mol/cm2 by a close-packed monolayer and an electron-transfer rate of 6.65 s(-1) is achieved after 9 h of chemisorption, as determined by cyclic voltammetry (CV) and synchrotron X-ray reflectivity. With this molecular probe, it is found that O2 plasma-treated ITO has a significantly greater electroactive coverage of 7.9 x 10 (-10) mol/cm2 than as-received ITO. CV studies of this redox SAM on five different TCO surfaces reveal that MOCVD-derived CdO exhibits the greatest electroactive coverage (8.1 x 10(-10) mol/cm2) and MOCVD-derived ZITO (ZnIn2.0Sn1.5O) exhibits the highest electron transfer rate (7.12 s(-1)).  相似文献   

10.
Mixed monolayers of hexadecanoic acid (HDA) and 16-mercaptohexadecanoic acid (MHDA) were adsorbed to nanocrystalline TiO2 films, and CdSe nanoparticles were attached to the mixed monolayer functionalized surfaces. IR absorption spectroscopy was used to characterize the equilibrium binding of HDA and MHDA to TiO2. Surface adduct formation constants (Kad) of (4+/-2)x10(3) M(-1) and (6+/-4)x10(3) M(-1) were measured for HDA and MHDA, respectively. CdSe nanoparticles were adsorbed to the terminal thiol groups of MHDA. The surface coverage of CdSe was greater on mixed monolayers, consisting of approximately 12% MHDA and 88% HDA, than on pure MHDA monolayers. A mechanism is proposed wherein intralayer disulfide formation between MHDA thiol groups causes decreased reactivity toward CdSe nanoparticles. Disulfide formation is less significant at low fractional surface coverages of MHDA. The mechanism is supported by an increase of CdSe adsorption upon chemical reduction of surface disulfides to thiols. Our findings highlight the effect of intermolecular interactions on the affinity of nanoparticles for monolayer-functionalized surfaces.  相似文献   

11.
Ferritin-directed assembly of binary monolayers of zwitterionic dipalmitoylphosphatidylcholine and cationic dioctadecyldimethylammonium bromide (DOMA) at the interface and surface patterns of ferritin on the monolayers have been investigated using a combination of infrared reflection absorption spectroscopy, surface plasmon resonance, and atomic force microscopy. Ferritin binding to the binary monolayers at the air-water interface at the surface pressure 30 mN/m, primarily driven by the electrostatic interaction, gives rise to a change in tilt angle of hydrocarbon chains from 15 degrees +/- 1 degrees to 10 degrees +/- 1 degrees with respect to the normal of the monolayer at the mole fraction of DOMA (XDOMA) of 0.1. The chains at XDOMA = 0.3 are oriented vertical to the water surface before and after protein binding. A new mechanism for protein binding to the binary monolayers is proposed. The secondary structures of the adsorbed ferritin are prevented from changing to some extent due to the existence of the monolayers. The amounts of the bound protein on the monolayers at the air-water interface are increased in comparison with those on the pre-immobilized monolayers at low XDOMA. The increased amounts and different patterns of the adsorbed protein at the monolayers are mostly attributed to the formation of multiple binding sites available for ferritin, which is due to the lateral reorganization of the lipid components in the monolayers induced by the protein in the subphase. The created multiple binding sites on the monolayer surfaces through the protein-directed assembly can be preserved for subsequent protein binding.  相似文献   

12.
Self-assembled monolayers (SAMs) of N-(3-triethoxysilylpropyl)-4-hydroxybutyramide were prepared on silicon oxide on silicon (Si/SiO(2)). Initial silane adsorption and high-temperature annealing led to a stable base monolayer with many large over-lying islands of disordered multilayers as a result of the non-self-limited growth process. The disordered multilayers were hydrolyzed and subsequently removed by CO(2) snow treatment. The resulting films were one monolayer thick as measured by ellipsometry. Atomic force microscopy, attenuated total reflection Fourier transform infrared spectroscopy, and contact angle analysis showed that the films were composed of monolayers with full and uniform surface coverage rather than nonuniform coverage by islands or patches of multilayers. Monolayers of octadecyltrichlorosilane were also prepared by multilayer removal via CO(2) treatment, showing the general applicability of the technique toward siloxane SAMs. We believe that CO(2) is an excellent solvent for weakly bound and hydrolyzed molecules that compose multilayers, and this ability to prepare near-perfect monolayer films from imperfect ones allows for less stringent formation conditions.  相似文献   

13.
A novel determination method of electroinactive molecules by means of electrochemical technique is presented. A new self-assembled monolayer containing cyclodextrin(CD) is prepared with mono(6-o-p-tolylsulfonyl)-b-cyclodextrin. Although this derivatization process leads to a b-CD coverage of 10% of a full monolayer, this layer shows an effective host-guest response to ferrocene. The interfacial ferrocene complexation gives a response similar to that expected for a Langmuir adsorption isotherm yielding a stability constant of 4.2×104 mol-1@L and a maximum ferrocene coverage of 8.6′10-12 mol/cm2. The redox peak currents of the surface-confined ferrocene de-crease upon addition of competing b-CD guest species to the solution, such as m-toluic acid(mTA) and sodium dodecyl sulfonate(SDS). This principle has been used for the determination of the electroinactive molecules, mTA and SDS in the concentration ranges of 0.8-2.7 mmol/L and 5-100 nmol/L, respectively.  相似文献   

14.
The outermost atomic layer of perfluorinated thiol monolayers on gold and poly(tetrafluoroethylene) (PTFE) is analyzed by low-energy ion scattering. Absolute quantification of fluorine density in this layer was achieved after calibrating the fluorine signal with a freshly cleaved LiF(100) single crystal. The fluorine density of monolayers of a C8F17-thiol on gold was 1.48 x 10(15) F atoms/cm2, whereas for PTFE a value of 1.24 x 1015 F atoms/cm2 was observed. This difference was explained by the different tilt angles of the thiol on gold and PTFE chains with respect to the surface normal. Both a configurational and a molecular interpretation on the perfluorinated thiol monolayer on gold are given.  相似文献   

15.
In this Article, we describe a protocol for surface functionalization of benzenediazonium hexafluorophosphate monolayers by in situ electrochemical reduction of bis(benzenediazonium) hexafluorophosphate. Due to the considerable difference in potential between the first and second reduction of this species, it is possible to form a high density of surface-bound diazonium groups by use of a mild potential which selectively reduces only one diazonium group per ring. The resulting diazonium-containing monolayer reacts readily with solutions of electron-rich aromatic compounds. The reaction with ferrocene produces a dense (2.7 × 10(-10) mol/cm(2)) ferrocene-containing monolayer through a Gomberg-Bachmann type arylation. The resulting ferrocene group exhibits relatively rapid electron transfer to the electrode due to the conjugated linker layer as measured by alternating current voltammetry (ACV) and cyclic voltammetry. Aromatic systems with π-donor substitutents (N,N-dimethylaniline, N,N,N',N'-tetramethyldiaminobenzophenone, and hydroquinone) react through an azo-coupling to form monolayers linked to the surface through an azobenzene moiety. The redox properties of these electron-rich species tethered to the surface were observed and quantified using cyclic voltammetry. This simple and versatile functionalization procedure has a wide variety of potential applications in surface science and materials research.  相似文献   

16.
Optical techniques play an increasingly important role in the characterization of microstructure and surface densities of thin films at various interfaces. In this study, ellipsometry and infrared reflection absorption spectroscopy (IRRAS) were used for determining the surface densities of adsorbed layers of cationic surfactants in situ at the air-water interface. The surfactants were N(alpha)-lauroyl-arginine methyl ester (LAM) and N(alpha), N(omega)-bis(N(alpha)-lauroyl-arginine)-alpha,omega-alkylidenediamide (C(6)(LA)(2)). In ellipsometry, the ellipsometric phase angle Delta was obtained at various surfactant concentrations and was referenced to that of the solvent. Three algorithms were used for analyzing the data. The surface densities are 3.3+/-0.3x10(-6) mol/m(2) at 1 mM for LAM and 1.5+/-0.3x10(-6) mol/m(2) at 0.1 mM for C(6)(LA)(2) by using an algorithm for which the monolayer thickness was estimated from molecular modeling. The corresponding surface densities from literature surface tension data and the Gibbs adsorption isotherm procedure are 2.2+/-0.4x10(-6) mol/m(2) and 1.2+/-0.2x10(-6) mol/m(2), respectively. In addition, IRRAS spectra were obtained from monolayers of LAM and C(6)(LA)(2) at the air-water interface. The frequencies of the methylene stretching vibration bands indicate that the monolayers are liquid-like. The surface densities were determined from the reflectance-absorbance data by using the model of either an isotropic film or an anisotropic film on the aqueous subphase. The IRRAS-based surface densities from either model, by using DPPC monolayers for calibration, are 2.4+/-0.7x10(-6) mol/m(2) at 1 mM for LAM and 1.5+/-0.6x10(-6) mol/m(2) at 0.1 mM for C(6)(LA)(2), which are in fair agreement with the ellipsometry- and the surface-tension-based surface densities. Copyright 2001 Academic Press.  相似文献   

17.
The structure formation of wedge-shaped monodendrons based on symmetric benzenesulfonic acid with different lengths of peripheral alkyl chains was studied in Langmuir monolayers and Langmuir–Blodgett (LB) films. A phase transition from the liquid-expanded state to the liquid-condensed state was observed on compression of the Langmuir monolayers of the dendrons containing dodecyl lateral chains. The transition is accompanied by the formation of star-shaped aggregates visualized by Brewster angle microscopy. The three-layer LB transfer results in the reorganization of the monolayer into regions of bi-, tetra-, and hexalayers on a solid substrate with a low coverage of the surface. Homogeneous liquid-condensed mono layers are formed for the dendrons with hexa- and octadecyl chains, and the film thickness achieved by the LB transfer corresponds to the monolayer alignment of the molecules with the surface coverage up to 90%. It was determined that varying the alkyl length of wedge-shaped dendrones based on symmetric benzenesulfonic acid leads to a change in phase behavior of Langmuir monolayers as well as Langmuir–Blodgett films formed by them.  相似文献   

18.
Sum-frequency vibrational spectroscopy, with the help of surface pressure-area (π-A) isotherm, was used to study lipid Langmuir monolayers composed of molecules with positively and negatively charged headgroups as well as a 1:1 neutral mixture of the two. The spectral profiles of the CH(x) stretch vibrations are similar for all monolayers in the liquid-condensed (LC) phase. They suggest a monolayer structure of closely packed alkyl chains that are nearly all-trans and well oriented along the surface normal. In the liquid-expanded (LE) phase, the spectra of all monolayers appear characteristic of loosely packed chains with significant gauche defects. The OH stretch spectra of interfacial water for both positively and negatively charged monolayers are significantly enhanced in comparison with a neutral water interface, but the phase measurement of SFVS indicates that OH in the two cases points toward the bulk and the interface, respectively. The enhancement results mainly from surface-field-induced polar ordering of interfacial water molecules. For a charge-neutral monolayer composed of an equal number of positively and negatively charged lipid molecules, no such enhancement is observed. This mixed monolayer exhibits a wide range of LC/LE coexistence region extended to very low surface pressure and its CH(x) spectral profile in the coexistence region resembles that of the LC phase. This result suggests that in the LC/LE coexistence region, the mixed monolayer consists of coexisting LC and LE patches in which oppositely charged lipid molecules are homogeneously mixed and dispersed.  相似文献   

19.
Self-assembled monolayers of biomolecules on atomically planar surfaces offer the prospect of complex combinations of controlled properties, e.g., for bioelectronics. We have prepared a novel hemi-4-alpha-helix bundle protein by attaching two alpha-helical peptides to a cyclo-dithiothreitol (cyclo-DTT) template. The protein was de novo designed to self-assemble in solution to form a 4-alpha-helix bundle, whereas the disulfide moiety enables the formation of a self-assembled monolayer on a Au(111) surface by opening of the disulfide, thus giving rise to a two-step self-assembly process. The 2 x 2-alpha-helix bundle protein and its template were studied by X-ray photo electron spectroscopy (XPS), electrochemical methods, and electrochemical in situ scanning tunneling microscopy (in situ STM). XPS showed that the cyclo-DTT opens on adsorption to a gold surface with the integrity of the 2 x 2-alpha-helix bundle proteins retained. The surface properties of the DTT and 2 x 2-alpha-helix bundle protein adlayer were characterized by interfacial capacitance and impedance techniques. Reductive desorption was used to determine the coverage of the adlayers, giving values of 65 and 16 muC cm(-2) for DTT and 2 x 2-helix, respectively. The 2 x 2-alpha-helix bundle protein adlayers were imaged by in situ STM. The images indicated a dense monolayer according with the voltammetric data. No long-range order could be detected, but two clearly distinct STM contrasts were assigned to 2 x 2-alpha-helix bundle protein molecules oriented in parallel and antiparallel conformations. The template molecule DTT alone forms highly ordered 30-40 nm domains, giving an adlayer density which agreed well with the coverage determined by voltammetry. This could be exploited in STM imaging of mixed DTT/2 x 2-alpha-helix bundle protein monolayers, with clearly distinct STM patterns of the two components.  相似文献   

20.
The ability to immobilize proteins with high binding capacities on surfaces while maintaining their activity is critical for protein microarrays and other biotechnological applications. We employed poly(acrylic acid) (PAA) brushes as templates to immobilize ribonuclease A (RNase A), which is commonly used to remove RNA from plasmid DNA preparations. The brushes are grown by surface-anchored atom-transfer radical polymerization (ATRP) initiators. RNase A was immobilized by both covalent esterification and a high binding capacity metal-ion complexation method to PAA brushes. The polymer brushes immobilized 30 times more enzyme compared to self-assembled monolayers. As the thickness of the brush increases, the surface density of the RNase A increases monotonically. The immobilization was investigated by ellipsometry, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The activity of the immobilized RNase A was determined using UV absorbance. As much as 11.0 microg/cm(2) of RNase A was bound to PAA brushes by metal-ion complexation compared to 5.8 microg/cm(2) by covalent immobilization which is 30 and 16 times the estimated mass bound in a monolayer. The calculated diffusion coefficient D was 0.63 x 10(-14) cm(2)/s for metal-ion complexation and 0.71 x 10(-14) cm(2)/s for covalent immobilization. Similar values of D indicate that the binding kinetics is similar, but the thermodynamic equilibrium coverage varies with the binding chemistry. Immobilization kinetics and thermodynamics were characterized by ellipsometry for both methods. A maximum relative activity of 0.70-0.80 was reached between five and nine monolayers of the immobilized enzyme. However, the relative activity for covalent immobilization was greater than that of metal-ion complexation. Covalent esterification resulted in similar temperature dependence as free enzyme, whereas metal-ion complexation showed no temperature dependence indicating a significant change in conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号