首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Applying Baxter's method of the Q-operator to the set of Sekiguchi's commuting partial differential operators we show that Jack polynomials Pλ(1/g)1, …, χn) …, χn) are eigenfunctions of a one-parameter family of integral operators Qz. The operators Qz are expressed in terms of the Dirichlet-Liouville n-dimensional beta integral. From a composition of n operators Qzk we construct an integral operator Sn factorising Jack polynomials into products of hypergeometric polynomials of one variable. The operator Sn admits a factorisation described in terms of restricted Jack polynomials Pλ(1/g) (x1, …, xk, 1, … 1). Using the operator Qz for z = 0 we give a simple derivation of a previously known integral representation for Jack polynomials.  相似文献   

2.
Laurent Padé–Chebyshev rational approximants, A m (z,z –1)/B n (z,z –1), whose Laurent series expansions match that of a given function f(z,z –1) up to as high a degree in z,z –1 as possible, were introduced for first kind Chebyshev polynomials by Clenshaw and Lord [2] and, using Laurent series, by Gragg and Johnson [4]. Further real and complex extensions, based mainly on trigonometric expansions, were discussed by Chisholm and Common [1]. All of these methods require knowledge of Chebyshev coefficients of f up to degree m+n. Earlier, Maehly [5] introduced Padé approximants of the same form, which matched expansions between f(z,z –1)B n (z,z –1) and A m (z,z –1). The derivation was relatively simple but required knowledge of Chebyshev coefficients of f up to degree m+2n. In the present paper, Padé–Chebyshev approximants are developed not only to first, but also to second, third and fourth kind Chebyshev polynomial series, based throughout on Laurent series representations of the Maehly type. The procedures for developing the Padé–Chebyshev coefficients are similar to that for a traditional Padé approximant based on power series [8] but with essential modifications. By equating series coefficients and combining equations appropriately, a linear system of equations is successfully developed into two sub-systems, one for determining the denominator coefficients only and one for explicitly defining the numerator coefficients in terms of the denominator coefficients. In all cases, a type (m,n) Padé–Chebyshev approximant, of degree m in the numerator and n in the denominator, is matched to the Chebyshev series up to terms of degree m+n, based on knowledge of the Chebyshev coefficients up to degree m+2n. Numerical tests are carried out on all four Padé–Chebyshev approximants, and results are outstanding, with some formidable improvements being achieved over partial sums of Laurent–Chebyshev series on a variety of functions. In part II of this paper [7] Padé–Chebyshev approximants of Clenshaw–Lord type will be developed for the four kinds of Chebyshev series and compared with those of the Maehly type.  相似文献   

3.
A new class of symmetric polynomials in n variables z = (z1,…, zn), denoted tλ(z), and labelled by partitions λ = [λ1 … λn] is defined in terms of standard tableaux (equivalently, in terms of Gel'fand-Weyl patterns of the general linear group GL(n,C)). The tλ(z) are shown to be a -basis of the ring of all symmetric polynomials in n variables. In contrast to the usual basis sets such as the Schur functions eλ(z), which are homogeneous polynomials in the zi, the tλ(z) are inhomogeneous. This property is reflected in the fact that the tλ(z) are a natural basis for the expansion of certain (inhomogeneous) symmetric polynomials constructed from rising factorials. This and several other properties of the tλ(z) are proved. Two generalizations of the tλ(z) are also given. The first generalizes the tλ(z) to a 1-parameter family of symmetric polynomials, Tλ(α; z), where α is an arbitrary parameter. The Tλ(α; z) are shown to possess properties similar to those of the tλ(z). The second generalizes the tλ(z) to a class of skew-tableau symmetric polynomials, tλ/μ(z), for which only a few preliminary results are given.  相似文献   

4.
A two-parameter family of polynomials is introduced by a recursion formula. The polynomials are orthogonal on the unit circle with respect to the weight ωα, β(θ) = |(1 − z)α(1 + z)β|2, α, β > − , z = eiθ. Explicit representation, norm estimates, shift identities, and explicit connection to Jacobi polynomials on the real interval [−1, 1] is presented.  相似文献   

5.
The tensor product of a positive and a negative discrete series representation of the quantum algebra Uq(su(1,1)) decomposes as a direct integral over the principal unitary series representations. Discrete terms can appear, and these terms are a finite number of discrete series representations, or one complementary series representation. From the interpretation as overlap coefficients of little q-Jacobi functions and Al-Salam and Chihara polynomials in base q and base q–1, two closely related bilinear summation formulas for the Al-Salam and Chihara polynomials are derived. The formulas involve Askey-Wilson polynomials, continuous dual q-Hahn polynomials and little q-Jacobi functions. The realization of the discrete series as q-difference operators on the spaces of holomorphic and anti-holomorphic functions, leads to a bilinear generating function for a certain type of 21-series, which can be considered as a special case of the dual transmutation kernel for little q-Jacobi functions.  相似文献   

6.
7.
In the study of the irreducible representations of the unitary groupU(n), one encounters a class of polynomials defined onn2indeterminateszij, 1i, jn, which may be arranged into ann×nmatrix arrayZ=(zij). These polynomials are indexed by double Gelfand patterns, or equivalently, by pairs of column strict Young tableaux of the same shape. Using the double labeling property, one may define a square matrixD(Z), whose elements are the double-indexed polynomials. These matrices possess the remarkable “group multiplication property”D(XY)=D(X) D(Y) for arbitrary matricesXandY, even though these matrices may be singular. ForZ=UU(n), these matrices give irreducible unitary representations ofU(n). These results are known, but not always fully proved from the extensive physics literature on representation of the unitary groups, where they are often formulated in terms of the boson calculus, and the multiplication property is unrecognized. The generality of the multiplication property is the key to understanding group representation theory from the purview of combinatorics. The combinatorial structure of the general polynomials is expected to be intricate, and in this paper, we take the first step to explore the combinatorial aspects of a special class which can be defined in terms of the set of integral matrices with given row and column sums. These special polynomials are denoted byLα, β(Z), whereαandβare integral vectors representing the row sums and column sums of a class of integral matrices. We present a combinatorial interpretation of the multiplicative properties of these polynomials. We also point out the connections with MacMahon's Master Theorem and Schwinger's inner product formula, which is essentially equivalent to MacMahon's Master Theorem. Finally, we give a formula for the double Pfaffian, which is crucial in the studies of the generating function of the 3njcoefficients in angular momentum theory. We also review the background of the general polynomials and give some of their properties.  相似文献   

8.
The asymptotic behavior of quadratic Hermite–Padé polynomials associated with the exponential function is studied for n→∞. These polynomials are defined by the relation
(*)
pn(z)+qn(z)ez+rn(z)e2z=O(z3n+2) as z→0,
where O(·) denotes Landau's symbol. In the investigation analytic expressions are proved for the asymptotics of the polynomials, for the asymptotics of the remainder term in (*), and also for the arcs on which the zeros of the polynomials and of the remainder term cluster if the independent variable z is rescaled in an appropriate way. The asymptotic expressions are defined with the help of an algebraic function of third degree and its associated Riemann surface. Among other possible applications, the results form the basis for the investigation of the convergence of quadratic Hermite–Padé approximants, which will be done in a follow-up paper.  相似文献   

9.
The main difficulties in the Laplace’s method of asymptotic expansions of integrals are originated by a change of variables. We propose a variant of the method which avoids that change of variables and simplifies the computations. On the one hand, the calculation of the coefficients of the asymptotic expansion is remarkably simpler. On the other hand, the asymptotic sequence is as simple as in the standard Laplace’s method: inverse powers of the asymptotic variable. New asymptotic expansions of the Gamma function Γ(z) for large z and the Gauss hypergeometric function 2F1(a,b,c;z) for large b and c are given as illustrations. An explicit formula for the coefficients of the classical Stirling expansion of Γ(z) is also given.  相似文献   

10.
Results are presented for some infinite series appearing in Feynman diagram calculations, many of which are similar to the Euler series. These include both one-, two- and three-dimensional series. The sums of these series can be evaluated with the help of various integral representations for hypergeometric functions, and expressed in terms of ζ(2),ζ(3), the Catalan constant G and Cl2(π/3) where Cl2(θ) is Clausen's function.  相似文献   

11.
We give interpretations for quotient Jν+1/Jν of q-Bessel functions. These q-analogs are related to generating function of weighted complete binary trees according to the number of leaves and to multichains on a partially ordered set, corresponding to weighted paths in the plane.Nous donnons des interprétations combinatoires du rapport Jν+1/Jν de q-fonctions de Bessel. Ces q-analogues énumèrent des classes d'arbres binaires complets valués suivant le nombre de feuilles et des multichaînes d'un ensemble partiellement ordonné, correspondant à des chemins valués dans le plan.  相似文献   

12.
In a paper by K. Driver and P. Duren (1999, Numer. Algorithms21, 147–156) a theorem of Borwein and Chen was used to show that for each k the zeros of the hypergeometric polynomials F(−nkn+1; kn+2; z) cluster on the loop of the lemniscate {z: |zk(1−z)|=kk/(k+1)k+1}, with Re{z}>k/(k+1) as n→∞. We now supply a direct proof which generalizes this result to arbitrary k>0, while showing that every point of the curve is a cluster point of zeros. Examples generated by computer graphics suggest some finer asymptotic properties of the zeros.  相似文献   

13.
Expansions in terms of Bessel functions are considered of the Kummer function 1 F 1(a; c, z) (or confluent hypergeometric function) as given by Tricomi and Buchholz. The coefficients of these expansions are polynomials in the parameters of the Kummer function and the asymptotic behavior of these polynomials for large degree is given. Tables are given to show the rate of approximation of the asymptotic estimates. The numerical performance of the expansions is discussed together with the numerical stability of recurrence relations to compute the polynomials. The asymptotic character of the expansions is explained for large values of the parameter a of the Kummer function.  相似文献   

14.
Let p > 1, and dμ a positive finite Borel measure on the unit circle Γ: = {z ε C: ¦z¦ = 1}. Define the monic polynomial φn, p(z)=zn+…εPn >(the set of polynomials of degree at most n) satisfying
. Under certain conditions on dμ, the asymptotics of φn, p(z) for z outside, on, or inside Γ are obtained (cf. Theorems 2.2 and 2.4). Zero distributions of φn, p are also discussed (cf. Theorems 3.1 and 3.2).  相似文献   

15.
The basic Lommel polynomials associated to the11q-Bessel function and the Jacksonq-Bessel functions are considered as orthogonal polynomials inqν, whereνis the order of the corresponding basic Bessel functions. The corresponding moment problems are both indeterminate and determinate depending on a parameter. Using techniques of Chihara and Maki we derive an explicit orthogonality measure, which is discrete and unbounded. For the indeterminate moment problem this measure is N-extremal. Some results on the zeros of the basic Bessel functions, both as functions of the order and of the argument are obtained. Precise asymptotic behaviour of the zeros of the11q-Bessel function is obtained.  相似文献   

16.
We obtain the spectral decomposition of the hypergeometric differential operator on the contour Re z = 1/2. (The multiplicity of the spectrum of this operator is 2.) As a result, we obtain a new integral transform different from the Jacobi (or Olevskii) transform. We also construct an 3 F 2-orthogonal basis in a space of functions ranging in ℂ2. The basis lies in the analytic continuation of continuous dual Hahn polynomials with respect to the index n of a polynomial.__________Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 39, No. 2, pp. 31–46, 2005Original Russian Text Copyright © by Yu. A. Neretin  相似文献   

17.
We study the asymptotic behavior of the sequence of polynomials orthogonal with respect to the discrete Sobolev inner product on the unit circle

where f(Z)=(f(z1), …, f(l1)(z1), …, f(zm), …, f(lm)(zm)), A is a M×M positive definite matrix or a positive semidefinite diagonal block matrix, M=l1+…+lm+m, belongs to a certain class of measures, and |zi|>1, i=1, 2, …, m.  相似文献   

18.
We study the behavior of measures obtained as a result of the action of the Ornstein-Uhlenbeck semigroup T t associated with the Gaussian measure μ on an arbitrary probability measure ν in a separable Hilbert space as t → 0+. We prove that the densities of the parts of T t ν absolutely continuous with respect to μ converge in the measure μ to the density of the part of ν absolutely continuous with respect to μ. For a finite-dimensional space, we prove the convergence of these densities μ-almost everywhere. In the infinite-dimensional case, we give sufficient conditions for almost-everywhere convergence. We also consider conditions on the absolute continuity of T t ν with respect to μ in terms of the coefficients of the expansion of T t ν in a series in Hermite polynomials (an analog of the Ito- Wiener expansion) and the connection with finite absolute continuity.__________Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 56, No. 12, pp. 1654 – 1664, December, 2004.  相似文献   

19.
In this piece of work, we introduce a new idea and obtain stability interval for explicit difference schemes of O(k2+h2) for one, two and three space dimensional second-order hyperbolic equations utt=a(x,t)uxx+α(x,t)ux-2η2(x,t)u,utt=a(x,y,t)uxx+b(x,y,t)uyy+α(x,y,t)ux+β(x,y,t)uy-2η2(x,y,t)u, and utt=a(x,y,z,t)uxx+b(x,y,z,t)uyy+c(x,y,z,t)uzz+α(x,y,z,t)ux+β(x,y,z,t)uy+γ(x,y,z,t)uz-2η2(x,y,z,t)u,0<x,y,z<1,t>0 subject to appropriate initial and Dirichlet boundary conditions, where h>0 and k>0 are grid sizes in space and time coordinates, respectively. A new idea is also introduced to obtain explicit difference schemes of O(k2) in order to obtain numerical solution of u at first time step in a different manner.  相似文献   

20.
Let {pk(x; q)} be any system of the q-classical orthogonal polynomials, and let be the corresponding weight function, satisfying the q-difference equation Dq(σ)=τ, where σ and τ are polynomials of degree at most 2 and exactly 1, respectively. Further, let {pk(1)(x;q)} be associated polynomials of the polynomials {pk(x; q)}. Explicit forms of the coefficients bn,k and cn,k in the expansions
are given in terms of basic hypergeometric functions. Here k(x) equals xk if σ+(0)=0, or (x;q)k if σ+(1)=0, where σ+(x)σ(x)+(q−1)xτ(x). The most important representatives of those two classes are the families of little q-Jacobi and big q-Jacobi polynomials, respectively.Writing the second-order nonhomogeneous q-difference equation satisfied by pn−1(1)(x;q) in a special form, recurrence relations (in k) for bn,k and cn,k are obtained in terms of σ and τ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号