首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dc Josephson effect in a superconducting quantum point contact, where supercurrent flows through a small number of channels, is reviewed. The central role of Andreev levels is emphasized which carry the whole supercurrent in short symmetric Josephson junctions including tunnel junctions. A simple intuitive view of the dc Josephson effect in a quantum point contact is given in terms of multiple Andreev reflections. The quantization of the critical current in superconducting quantum point contacts is briefly discussed.  相似文献   

2.
A supercurrent through a superconducting microbridge gives rise to a minimum in the density of Cooper pairs in the middle of the bridge. Application of a microwave electric field creates a non-equilibrium situation and therefore smears the Cooper pair distribution. This allows for a higher critical current and explains the microwave-enhanced supercurrent observed in thin-film microbridges.  相似文献   

3.
BCS Superconductivity of Dirac electrons in graphene layers   总被引:2,自引:0,他引:2  
Possible superconductivity of electrons with the Dirac spectrum is analyzed using the BCS model. We calculate the critical temperature, the superconducting energy gap, and the supercurrent as functions of the doping level and of the pairing interaction strength. Zero doping is characterized by the existence of a quantum critical point such that the critical temperature vanishes below some finite value of the interaction strength. However, the critical temperature remains finite for any nonzero electron or hole doping level when the Fermi energy is shifted away from the Dirac point. As distinct from usual superconductors, the supercurrent density is not proportional to the number of electrons but is strongly decreased due to the presence of the Dirac point.  相似文献   

4.
We consider a combined nanomechanical-supercondcuting device that allows the Cooper pair tunneling to interfere with the mechanical motion of the middle superconducting island. Coupling of mechanical oscillations of a superconducting island between two superconducting leads to the electronic tunneling generates a supercurrent that is modulated by the oscillatory motion of the island. This coupling produces alternating finite and vanishing supercurrent as function of the superconducting phases. Current peaks are sensitive to the superconducting phase shifts relative to each other. The proposed device may be used to study the nanoelectromechanical coupling in case of superconducting electronics.  相似文献   

5.
Numerical methods are used to analyze the Ginzburg-Landau equations for a superconducting plate carrying transport current in a magnetic field. Critical current is calculated as a function of the applied magnetic field strength for superconducting plates with different thicknesses. The relations between the field dependence of critical current and the distributions of order parameter, magnetic field, and supercurrent in a plate are analyzed. The field-dependent critical currents computed for plates are used to determine the critical current as a function of the applied magnetic field strength and local magnetic field and current distributions for multilayers in parallel magnetic fields. The constituent superconducting layers are assumed to interact only via magnetic field. A simple method is proposed for analyzing the critical states of multilayers in magnetic fields of arbitrary strength, based on elementary transformations of the critical current-density distribution over individual layers in zero applied magnetic field. The method can be used to analyze experimental results.  相似文献   

6.
The critical current and its dependence on the length of a thin superconducting wire between two normal metals and the voltage difference across the wire at the critical current is calcualted. The latter arises from the conversion of the normal current into supercurrent and vice versa at the contacts. It is found that the critical current is zero when the length of the wire is π coherence lengths or smaller.  相似文献   

7.
We fabricated reproducible high transparency superconducting contacts consisting of superconducting Ti/Al/Ti trilayers to gated single-wall carbon nanotubes. The reported semiconducting single-wall carbon nanotubes have normal state differential conductance up to 3e2/h and exhibit clear Fabry-Perot interference patterns in the bias spectroscopy plot. We observed subharmonic gap structure in the differential conductance and a distinct peak in the conductance at zero bias, which is interpreted as a manifestation of the supercurrent. The gate dependence of this supercurrent as well as the excess current are examined and compared to the coherent theory of superconducting quantum point contacts with good agreement.  相似文献   

8.
Rubidium-87 atoms are trapped in an Ioffe-Pritchard potential generated with a persistent supercurrent that flows in a loop circuit patterned on a sapphire surface. The superconducting circuit is a closed loop made of a 100 microm wide molecular-beam epitaxy-grown MgB2 stripe carrying a supercurrent of 2.5 A. To control the supercurrent in the stripe, an on-chip thermal switch operated by a focused argon-ion laser is developed. The switch operates as an on/off switch of the supercurrent or as a device to set the current to a specific value with the aid of an external magnetic field. The current can be set even without an external source if the change is in the decreasing direction.  相似文献   

9.
The dc Josephson effect is investigated in a single-walled metallic carbon nanotube connected to two superconducting leads. In particular, by using the Luttinger liquid theory, we analyze the effects of the electron-electron interaction on the supercurrent. We find that in the long junction limit the strong electronic correlations of the nanotube, together with its peculiar band structure, induce oscillations in the critical current as a function of the junction length and/or the nanotube electron filling. These oscillations represent a signature of the Luttinger liquid physics of the nanotube, for they are absent if the interaction is vanishing. We show that this effect can be exploited to reverse the sign of the supercurrent, realizing a tunable π-junction.  相似文献   

10.
We demonstrate experimentally the manipulation of supercurrent in Al-AlOx-Ti Josephson tunnel junctions by injecting quasiparticles in a Ti island from two additional tunnel-coupled Al superconducting reservoirs. Both supercurrent enhancement and quenching with respect to equilibrium are achieved. We demonstrate cooling of the Ti line by quasiparticle injection from the normal state deep into the superconducting phase. A model based on heat transport and the nonmonotonic current-voltage characteristic of a Josephson junction satisfactorily accounts for our findings.  相似文献   

11.
《Current Applied Physics》2020,20(5):680-685
We report the fabrication and characterization of superconducting quantum interference devices (SQUIDs) made of Sb-doped Bi2Se3 topological insulator (TI) nanoribbon (NR) contacted with PbIn superconducting electrodes. When an external magnetic field was applied along the NR axis, the TI NR exhibited periodic magneto-conductance oscillations, the so-called Aharonov-Bohm oscillations, owing to one-dimensional subbands. Below the superconducting transition temperature of PbIn electrodes, we observed supercurrent flow through TI NR-based SQUID. The critical current periodically modulates with a magnetic field perpendicular to the SQUID loop, revealing that the periodicity corresponds to the superconducting flux quantum. Our experimental observations can be useful to explore Majorana bound states (MBS) in TI NR, promising for developing topological quantum information devices.  相似文献   

12.
The supercurrent in a Josephson junction composed of the zigzag edged graphene nanoribbon (ZGNR) lying between two superconducting leads [superconductor-graphene-superconductor (SGS) junction] has been studied by the Green's function method. It is found that a small transverse electric field applied on the ZGNR can reverse the supercurrent direction, leading to a so-called 0-pi phase transition. The 0-pi phase transition can happen periodically with a change in the ZGNR's length, and, more importantly, can be easily and electrically controllable by a gate voltage, which is absent in the conventional superconducting pi junction and would make the SGS junction very promising for future application in superconducting electronics, as well as quauntum information and computation.  相似文献   

13.
Thin film, macroscopic arrays of superconducting particles 100–10,000 Å in diameter can be produced by evaporating the superconductor in a gas at low pressure. The arrays have a critical supercurrent, Ic, which is a sensitive, multiply periodic function of the applied magnetic field. A simple model of multiple current paths through the array is proposed to explain both this observation and the general shape of the current-voltage characteristics.  相似文献   

14.
We consider a ballistic Josephson junction with a quantum point contact in a two-dimensional electron gas with Rashba spin-orbit coupling. The point contact acts as a spin filter when embedded in a circuit with normal electrodes. We show that with an in-plane external magnetic field an anomalous supercurrent appears even for zero phase difference between the superconducting electrodes. In addition, the external field induces large critical current asymmetries between the two flow directions, leading to supercurrent rectifying effects.  相似文献   

15.
Nanohybrid superconducting junctions using antimony telluride (Sb2Te3) topological insulator nanoribbons and Nb superconducting electrodes are fabricated using electron beam lithography and magnetron sputtering. The effects of bias current, temperature, and magnetic field on the transport properties of the junctions in a four-terminal measurement configuration are investigated. Two features are observed. First, the formation of a Josephson weak-link junction. The junction is formed by proximity-induced areas in the nanoribbon right underneath the inner Nb electrodes which are connected by the few tens of nanometers short Sb2Te3 bridge. At 0.5 K a critical current of 0.15 µA is observed. The decrease of the supercurrent with temperature is explained in the framework of a diffusive junction. Furthermore, the Josephson supercurrent is found to decrease monotonously with the magnetic field indicating that the structure is in the small-junction limit. As a second feature, a transition is also observed in the differential resistance at larger bias currents and larger magnetic fields, which is attributed to the suppression of the proximity-induced superconductive state in the nanoribbon area underneath the Nb electrodes.  相似文献   

16.
We study the effect of an applied magnetic field on sub-10-nm wide MoGe and Nb superconducting wires. We find that magnetic fields can enhance the critical supercurrent at low temperatures, and do so more strongly for narrower wires. We conjecture that magnetic moments are present, but their pair-breaking effect, active at lower magnetic fields, is suppressed by higher fields. The corresponding microscopic theory, which we have developed, quantitatively explains all experimental observations, and suggests that magnetic moments have formed on the wire surfaces.  相似文献   

17.
We propose a new artificial neural cell based on the dynamical properties of superconducting Wheatstone bridges loaded with a transmission line across their transverse junction. The current through the load line of the bridge switches (via magnetic coupling) to a non-zero voltage state an array of double-junction superconducting quantum interference devices (2J-SQUIDs) composing the synaptic circuit. It is shown that the current flowing to the postsynaptic neural cell can be controlled digitally by switching the bias current of the 2J-SQUIDs from zero (OFF state) to 90% of 2 Ic (ON state), where Ic is the critical supercurrent in each junction of the 2J-SQUIDs. Potential applications of the neural cell are briefly discussed.  相似文献   

18.
We investigate the quantum entanglement and supercurrent of coupling superconducting qubits in circuit QED system. We compare the effect of the relative phase of the coupling qubits on the concurrence and supercurrent when the microwave field is initially in coherent state, even coherent state and odd coherent state. The results show that entanglement death can be avoided via manipulating the relative phase only in the coherent state since the improvement for entanglement death is unsatisfactory in the even coherent state and odd coherent state.  相似文献   

19.
Near the superconducting transition temperature pairpotential behaviour and supercurrent in nonhomogeneous sandwich systems of SNS-and SINIS-types (S superconductor, N normal metal, I insulator) are theoretically investigated. The proximity effect is taken into account by using an extrapolation length which relates the order parameter value to its first derivative at interfaces. In frame of the microscopic theory of superconductivity this extrapolation length follows with the help of an appropriate variational principle which has been checked on systems which allow exact solutions. The resulting supercurrent expressions are discussed in detail with respect to temperature dependence and impurity influence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号