首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavior of binary mixed Langmuir monolayers from gramicidin A (GA) and ethyl nonadecanoate (EN), spread on aqueous subphases containing NaCl and CaCl2, was investigated on the basis of the analysis of surface pressure-average area per molecule (pi-A) isotherms complemented with Brewster angle microscopy (BAM) images. Compression modulus versus surface pressure (C(S-1)-pi) curves indicate the existence of interactions in the GA-EN mixed monolayers at low surface pressures (below 5 mN m(-1)). However, for mixtures in which the ester is the predominant component, both GA and EN are miscible within regions from fully expanded to collapse. To examine the interactions between both components in the studied system, values of the mean molecular area per molecule (A12) were plotted as a function of molar fraction of gramicidin A (X(GA)). A12-X(GA) plots exhibit negative deviations from ideality at high surface pressures, wherein beta-helices of GA are vertically oriented in respect to the interface. However, at surface pressures below the plateau transition, which is due to reorientation of GA, the binary system obeys the additive rule. Brewster angle microscopy (BAM) was applied for a direct visualization of the monolayers morphologies. The obtained images prove that for molar ratios of GA > or = 0.3 and at surface pressures above 5 mN m(-1), both components are immiscible at the interface. The observed negative deviations from the additively rule were attributed to the formation of a three-dimensional phase in the mixed film, which provokes its contraction at the interface.  相似文献   

2.
The Langmuir film balance technique was used to determine the hydrolytic kinetics of monolayers of the stereocomplex formed from mixtures of enantiomeric polylactides, poly(L-lactide) (L-PLA) and poly(D-lactide) (D-PLA), spread at the air-water interface. The present study investigated parameters such as degradation medium, mixture composition, and time on the relative degradation rate. The pi-A isotherms of monolayers of the mixtures provide clear evidence for the presence of a stereocomplex; the isotherms of monolayers of individual polyenantiomer show a transition at about 8.5 mN/m, whereas the transition of monolayers containing a stereocomplex formed from the equimolar mixture shifted to higher surface pressure, about 11 mN/ m. The rate of hydrolysis was recorded by a change in occupied area when the monolayer is maintained at a constant surface pressure. The hydrolysis of the mixture monolayers under basic conditions was slower than that of individual polyenantiomer monolayers, depending on the composition or the degree of complexation. In the presence of proteinase K, the enzymatic hydrolysis rate of mixture monolayers with >50 mol % l-PLA was much slower than that of the single-component L-PLA monolayer. The monolayers formed from mixtures with < or =50 mol % L-PLA did not show any change of occupied areas. This result is explained by the inactivity of D-PLA and stereocomplexed chains to the enzyme. From both results, it can be concluded that the retardation of the hydrolysis of mixture monolayers is mainly due to a strong interaction between D- and L-lactide unit sequences, which prevents the penetration of water or enzyme into the bulk.  相似文献   

3.
Mixed phospholipid monolayers hosting a poly(ethylene glycol) (PEG)-grafted distearoylphosphatidylethanolamine with a PEG molecular weight of 5000 (DSPE-PEG5000) spread at the air/water interface were used as model systems to study the effect of PEG-phospholipids on the lateral structure of PEG-grafted membrane-mimetic surfaces. DSPE-PEG5000 has been found to mix readily with distearoylphosphoethanolamine-succinyl (DSPE-succynil), a phospholipid whose structure resembles closely that of the phospholipid part of the DSPE-PEG5000 molecule. However, properties of mixed monolayers such as morphology and stability varied significantly with DSPE-PEG5000 content. In particular, our surface pressure, epifluorescence microscopy (EFM), and Brewster angle microscopy (BAM) studies have shown that mixtures containing 1-9 mol % of DSPE-PEG5000 form stable condensed monolayers with no sign of microscopic phase separation at surface pressures above approximately 25 mN/m. Yet, at 1 mol % of DSPE-PEG5000 in mixed monolayers, the two components have been found to behave nearly immiscibly at surface pressures below approximately 25 mN/m. For monolayers containing 18-75 mol % of DSPE-PEG5000, a high-pressure transition has been observed in the low-compressibility region of their isotherms, which has been identified on the basis of continuous BAM imaging of monolayer morphology, as reminiscent of the collapse nucleation in a pure DSPE-PEG5000 monolayer. Thus, the comparative analysis of our surface pressure, EFM, and BAM data has revealed that there exists a rather narrow range of mixture compositions with DSPE-PEG5000 content between 3 and 9 mol %, where somewhat homogeneous distribution of DSPE-PEG5000 molecules and high pressure stability can be achieved. This finding can be useful to "navigating" through possible mixture compositions while developing guidelines to the rational design of membrane-mimetic surfaces with highly controlled bio-nonfouling properties.  相似文献   

4.
Vibrational sum frequency generation (SFG) spectroscopy was applied to study the phase transitions of the mixed monolayers of l-alpha-distearoyl phosphatidylethanolamine (DSPE) and DSPE covalently coupled with poly(ethylene oxide) at the amino head group (DSPE-EO(45), DSPE with 45 ethylene oxide monomers) at the air-water interface. The SFG spectra were measured for the mixed monolayers with the mole fractions of DSPE-EO(45) of 0, 1.3, 4.5, 9.0, 12.5, and 16.7% at the surface pressures of 5, 15, and 35 mN/m. The monolayer compression isotherms indicated that the mixed monolayers at 5, 15, are 35 mN/m are mainly in the so-called "pancake", "mushroom", and "brush" states, respectively. The SFG spectra in the OH stretching vibration region give rise to SFG bands near 3200 and 3400 cm(-1). The mean molecular amplitude of the former band due to the OH stretching of the "icelike" water molecules associated mainly with the hydrophilic poly(ethylene oxide) (PEO) chains, exhibits appreciable decrease on compression of the mixed monolayers from 5 to 15 mN/m. The result corroborates the model for the pancake-mushroom transition, which presumes the dissolution of the PEO chains from the air-water interface to the water subphase. Further compression of the mixed monolayers to 35 mN/m causes a slight decrease of the line amplitude, which can be explained by considering a squeezing out of water molecules from the hydrophilic groups of DSPE-EO(45) in the brush state, where the PEO chains strongly interact with each other to form a tight binding state of the hydrophilic groups. The relative intensities of the SFG bands due to the CH3 asymmetric and symmetric vibrations were used to estimate the tilt angles of the terminal methyl group of DSPE, indicating that the angle increases with increasing the mole fraction of DSPE-EO(45). The angles almost saturate at the mole fraction larger than 10%, the saturation angle being nearly 90 degrees at 5 mN/m, ca. 60 degrees at 15 mN/m, and ca. 47 degrees at 35 mN/ m. Then, the introduction of the hydrophilic PEO head group causes a large tilting of the alkyl groups of DEPE in the mixed monolayers.  相似文献   

5.
Surface pressure-area per monomer (pi-A) isotherms show that poly(L-lactic acid) (PLLA) Langmuir monolayers exhibit a liquid expanded-to-condensed (LE/LC) phase transition at low surface pressure. Brewster angle microscopy images show circular domains where the LC phase is surrounded by the LE phase during phase coexistence. Morphology studies via atomic force microscopy show that well-ordered patterns are only observed for Langmuir-Blodgett films prepared in the LC phase, while no ordered features are observed in the LE phase. The morphological differences confirm that during the LE/LC phase transition PLLA molecules form well-ordered structures at the air/water interface. Analysis by the two-dimensional Clausius-Clapeyron equation is used to predict the critical parameters (X(c)). Both critical parameters, the critical temperature (T(c)) and the critical pressure (pi(c)), increase with increasing number average molar mass (M(n)) as X(c) = X(c,infinity) - KM(n)(-1), where X(c,infinity) is the value of the critical parameter at infinite molar mass and K is a constant. For PLLA T(c,infinity) = 36.2 +/- 0.3 degrees C and pi(c,infinity) = 4.53 +/- 0.06 mN x m(-1). This study provides a model polymer system for examining critical behavior in two dimensions.  相似文献   

6.
The surface behaviour of spread dipalmitoyl phosphatidyl choline (DPPC), lung surfactant protein C (SP-C), and their mixtures were characterised using a captive bubble surfactometer. The surface tension was determined by using axisymmetric bubble shape analysis. Surface dilatational rheological behaviour was characterised by sinusoidal oscillation of the bubble volume and at frequencies 0.006-0.025 Hz. The pi/A isotherms of DPPC, SP-C, and their mixtures were described with a generalised equation of state. Monolayer cycling of mixed DPPC/SP-C layers yields isotherms with a plateau in the range of 50-53 mN/m. When the surface pressure becomes higher SP-C is squeezed out of the film, but it re-enters the film upon expansion. Surface dilatational elasticities of DPPC films had a maximum at about 30 mN/m. At higher surface pressures, the films became brittle and the elasticity decreased. A slightly pronounced maximum was found at a surface pressure exceeding 55 mN/m. The dilatational viscosity had two distinct maxima, corresponding with those in the elasticity curves, i.e. one before the minimum area demand, and one in the range of over-compression. This was explained by the formation of a second ordered complex structure in the range of film over-compression. SP-C films show continuously increasing dilatational elasticities and viscosities with a maximum at f approximately 0.02 Hz. Mixed monolayers, DPPC+2 mol% SP-C, had dilatational elasticities increasing with surface pressure. In contrast to DPPC alone, an elasticity maximum appeared in the range of the squeeze out plateau. The dilatational viscosity had two distinct maxima as observed for DPPC, whereas the maximum before the squeeze out plateau is very broad like that of SP-C. The viscosity decreased for frequencies higher 0.02 Hz favouring elastic properties of the film. Our data provide experimental evidence that SP-C mixed with DPPC yield higher elasticities and viscosities as compared with films formed by the single components. This behaviour is likely to support breathing cycles, especially for the turn from inspiration to expiration and vice versa.  相似文献   

7.
Phase diagram of Gibbs monolayers of mixtures containing n-hexadecyl phosphate (n-HDP) and L-arginine (L-arg) at a molar ratio of 1:2 has been constructed by measuring surface-pressure-time (pi-t) isotherms with film balance and by observing monolayer morphology with Brewster angle microscopy (BAM). This phase diagram shows a triple point for gas (G), liquid expanded (LE), and liquid condensed (LC) phases at around 6.7 degrees C. Above this triple point, a first-order G-LE phase transition occurring at 0 surface pressure is followed by another first-order LE-LC phase transition taking place at a certain higher surface pressure that depends upon temperature. The BAM observation supports these results. Below the triple point, the pi-t measurements show only one first-order phase transition that should be G-LC. All of these findings are in agreement with the general phase diagram of the spread monolayers. However, the BAM observation at a temperature below the triple point shows that the thermodynamically allowed G-LC phase transition is, in fact, a combination of the G-LE and LE-LC phase transitions. The latter two-phase transitions are separated by time and not by the surface pressure, indicating that the G-LC phase transition is kinetically separated into these two-phase transitions. The position of the LE phase below the triple point in the phase diagram is along the phase boundary between the G and LC phases.  相似文献   

8.
In this work, surface film balance and Brewster angle microscopy techniques have been used to analyze the structural characteristics (structure, topography, reflectivity, thickness, miscibility, and interactions) of hydrolysates from sunflower protein isolate (SPI) and dipalmitoylphosphatidylcholine (DPPC) mixed monolayers spread on the air-water interface. The degree of hydrolysis (DH) of SPI, low (5.62%), medium (23.5%), and high (46.3%), and the protein/DPPC mass fraction were analyzed as variables. The structural characteristics of the mixed monolayers deduced from the surface pressure (pi)-area (A) isotherms depend on the interfacial composition and degree of hydrolysis. At surface pressures lower than the equilibrium surface pressure of SPI hydrolysate (pi(e)(SPI hydrolysate)), both DPPC and protein are present in the mixed monolayer. At higher surface pressures (at pi > pi(e)(SPI hydrolysate)), collapsed protein residues may be displaced from the interface by DPPC molecules. The differences observed between pure SPI hydrolysates and DPPC in reflectivity (I) and monolayer thickness during monolayer compression have been used to analyze the topographical characteristics of SPI hydrolysates and DPPC mixed monolayers at the air-water interface. The topography, reflectivity, and thickness of mixed monolayers confirm at microscopic and nanoscopic levels the structural characteristics deduced from the pi-A isotherms.  相似文献   

9.
Novel water-soluble amphiphilic triblock copolymers poly(glycerol monomethacrylate)-b-poly(propylene oxide)-b-poly(glycerol monomethacrylate) (PGMA-b-PPO-b-PGMA) were synthesized because of their expected enhanced ability to interact with biological membranes compared to the well-known poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-b-PPO-b-PEO) block copolymers. Their bulkier hydrophilic PGMA blocks might induce a disturbance in the packing of liquid-crystalline lipid bilayers in addition to the effect caused by the hydrophobic PPO block alone. To gain a better insight into the polymer-membrane interactions at the molecular level, the adsorption kinetics and concomitant interactions of (PGMA14)(2-)PPO(34) with model membranes of dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) were monitored using infrared reflection absorption spectroscopy (IRRAS) coupled with Brewster angle microscopy (BAM) and surface pressure (pi) measurements. The maximum penetration surface pressure of ca. 39 mN/m suggests that (PGMA14)(2-)PPO(34) is able to insert into lipid monolayers even above the so-called monolayer-bilayer equivalent pressure of 30-35 mN/m. Copolymer adsorption to a liquid-expanded DPPC-d62 monolayer proceeds in a two-step mechanism: (i) initially only the more hydrophobic PPO middle block penetrates the lipid monolayer; (ii) following the liquid-expanded-liquid-condensed (LE-LC) phase transition, the bulky PGMA hydrophilic blocks are dragged into the headgroup region as the PPO block inserts further into the fatty acid region. The adsorption kinetics is considerably faster for DMPC-d54 monolayers due to their higher fluidity. Copolymer adsorption to an LC-DPPC-d62 monolayer leads to a change in the monolayer packing by forcing the lipid alkyl chains into a more vertical orientation, their tilt angle with respect to the surface normal being reduced from initially 30 degrees +/- 3 degrees to 18 degrees +/- 3 degrees. BAM images rule out macroscopic phase separation and show that coalescence of DPPC-d62 LC domains takes place at relatively low surface pressures of pi > or = 23 mN/m, suggesting that (PGMA14)(2-)PPO (34) partitions into both LE as well as LC domains.  相似文献   

10.
We report our studies on the mixed Langmuir monolayer of mesogenic molecules, p-(ethoxy)-p-phenylazo phenyl hexanoate (EPPH) and octyl cyano biphenyl (8CB), employing the techniques of surface manometry and Brewster angle microscopy. Our studies show that the mixed monolayer exhibits higher collapse pressures for certain mole fractions of EPPH in 8CB as compared to individual monolayers. Also, a considerable reduction in the area per molecule is seen in the mixed monolayer, indicating a condensed phase. We have also studied the photostability of the mixed monolayer at different initial surface pressures. The mixed monolayer, under alternate cycles of UV and visible illumination, exhibits changes in surface pressures. This is due to the photoinduced transformation of EPPH isomers in the mixed monolayer. Our in-situ Brewster angle microscope studies for 0.5 mole fraction of EPPH in 8CB show a phase separation in the UV and a miscible phase in the visible, at low surface pressures ( approximately 5 mN/m). At higher surface pressures ( approximately 10 mN/m), under UV illumination, we find a phase separation which does not revert to a miscible phase under visible illumination.  相似文献   

11.
The behaviour of monolayers and bilayers formed by the dialkyl chain non-ionic surfactant, 1,2-di-O-octadecyl-rac-glycerol-3-omega-methoxydodecaethylene glycol (2C(18)E(12)) in water at 297 K has been investigated. Using a surface film balance (or Langmuir trough) the compression-expansion cycle of the 2C(18)E(12) monolayer was found to be reversible when compressed to surface pressures (pi) less than 42 mN m(-1). Compression of 2C(18)E(12) monolayer to pi greater than 42 mN m(-1) above this resulted in a considerable hysteresis upon expansion with the pi remaining high relative to that obtained upon compression, suggesting a time/pressure dependent re-arrangement of 2C(18)E(12) molecules in the film. Morphology of the 2C(18)E(12) monolayer, investigated using Brewster angle microscopy, was also found to depend upon monolayer history. Bright, randomly dispersed domains of 2C(18)E(12) of approximately 5 mum in size were observed during compression of the monolayer to pi less than 42 mN m(-1). At pi of 42 mN m(-1) and above, the surfactant film appeared to be almost completely 'solid-like.' Regardless of the extent of compression of the monolayer film, expansion of the film caused formation of chains or 'necklaces' of individual surfactant domains, with the extent of chain formation dependent upon pressure of compression of the monolayer and the length of time held at that pressure. Irreversible effects on 2C(18)E(12) vesicle size were also seen upon temperature cycling the vesicles through their liquid-crystalline phase transition temperature with vesicles shrinking in size and not returning to their original size upon standing at 298 K for periods of more than 24 h. No comparable hysteresis, time, pressure or temperature effects were observed with the monolayer or vesicles formed by the corresponding phospholipid, disteaorylphosphatidylcholine, under identical conditions. The effects observed with 2C(18)E(12) are attributed to the ability of the polyoxyethylene head group to dehydrate and intrude into the hydrophobic chain region of the mono- and bilayers. These studies have important implications for the use of the vesicles formed by 2C(18)E(12) as drug delivery vehicles.  相似文献   

12.
We present the adsorption kinetics and the surface phase behavior of water-soluble n-tetradecyl phosphate (n-TDP) at the air-water interface by film balance and Brewster angle microscopy (BAM). The relaxation of the surface pressure at about zero value in the surface pressure (pi)-time (t) adsorption isotherm is found to occur from 2 to 20 degrees C with appropriate concentrations of the amphiphile. These plateaus are accompanied by two surface phases, confirming that the relaxation of the surface pressure is caused by a first-order phase transition. Only this phase transition is observed at <6.5 degrees C and it is considered as a gas (G)-liquid condensed (LC) phase transition. Above 6.5 degrees C, the phase transition at zero surface pressure is followed by another phase transition, which is indicated by the presence of cusp points in the pi-t curves at different temperatures. Each of the cusp points is followed by a plateau, which is accompanied by two surface phases, indicating that the latter transitions are also first-order in nature. At >6.5 degrees C, the former transition is classified as a first-order G-liquid expanded (LE) phase transition, while the latter transition is grouped into a first-order LE-LC phase transition. The critical surface pressure (pi(c)) necessary for the G-LC and G-LE phase transitions is zero and remains constant all over the studied temperatures, whereas that for the LE-LC transition increases linearly with increasing temperature. Based on these results, we construct a rather elaborated phase diagram that shows that the triple point for Gibbs monolayers of n-TDP is 6.5 degrees C. All the results are consistent with the present understanding of the Langmuir monolayers of insoluble amphiphiles at the air-water interface.  相似文献   

13.
Monolayers of enantiomeric compounds as well as diastereomeric mixtures and racemic/diastereomeric mixtures of ethyl 2-azido-4-fluoro-3-hydroxystearates have been investigated using surface pressure-area isotherms and Brewster angle microscopy. All monolayers collapse out of the liquid-expanded phase, forming 3D collapse structures which were visualized with scanning force microscopy. The enantiomeric compound and the diastereomeric mixtures form unique fiber-like network structures with heights between 20 and 40 nm. Interestingly, the shape of the enantiomeric fiber structures is straight, whereas the diastereomeric mixtures exhibit curved fibers of different sizes. The racemic mixture however forms circular 10 nm high and 20-50 microm broad structures. The shape of unconventional collapse structures could be changed by using distinct ratios of diastereomeric or racemic/diastereomeric mixed compounds.  相似文献   

14.
Asymmetrically substituted poly(paraphenylene) (PhPPP) with hydrophilic and hydrophobic side chains was investigated. The polymer behavior at the air-water interface was studied on the basis of surface pressure-area (pi-A) isotherms and compression/expansion hysteresis measurements. PhPPP can form stable monolayers with an area per repeat unit of A=0.20+/-0.02 nm2 and a collapse pressure in the range of pi=25 mN/m. Then, Langmuir-Blodgett-Kuhn (LBK) films of PhPPP were prepared by horizontally and vertically transferring the Langmuir monolayers onto hydrophilic solid substrates at pi=12 mN/m. Cross-section analysis of the AFM tapping-mode topography images of a single transferred monolayer reveals a thickness of d0=0.9+/-0.1 nm. Taking into account the obtained monolayer thickness, curve-fitting calculations of angular scan data of LB monolayers measured using surface plasmon resonance (SPR) spectroscopy lead to a value for the refractive index of n=1.78+/-0.02 at lambda=632.8 nm. Next, the spontaneous formation of a PhPPP monolayer by adsorption from solution was studied ex situ by atomic force microscopy and UV-vis spectroscopy and in situ by using SPR spectroscopy. Stable self-assembled monolayers of PhPPP can be formed on hydrophilic surfaces with a thickness similar to that of the monolayer obtained using the LB method. The characterization results confirmed the amphiphilic character and the self-assembly properties of PhPPP, as well as the possibility of preparing homogeneous monolayer and multilayer films.  相似文献   

15.
The association of neuropeptide Y (NPY) with air-water interfaces and with phospholipid monolayers on water subphases and on physiological buffer has been investigated. Surface pressure (pi) versus molecular area (A) relations of the peptide at water surfaces depend on the concentration of the spreading solutions. Independent of that concentration, they show a transition from a low-density state to a high-density state at pi approximately 12 mN/m. Similar features are observed in the NPY adsorption to preformed monolayers (Deltapi(t --> infinity) as a function of pii = pi (t = 0) where t = 0 signifies the time of peptide injection). The transition is also observed in cospread lipid-NPY monolayers and is interpreted as the exclusion of the peptide from the surface layer. The reproducibility of the isotherms after expansion suggests that cospread lipid-peptide monolayers are thermodynamically stable and that the peptide remains associated with the monolayer after exclusion from the lipid surface. A comparison of NPY association with zwitterionic and with anionic lipids as well as a comparison of the interactions on pure water and on physiological buffer suggest that electrostatic attraction plays a major role in the energetics of peptide binding to the membrane surface. Dual label fluorescence microscopy demonstrates that the peptide associates preferentially with the disordered, liquid condensed monolayer phase and also suggests that it self-aggregates upon exceeding a critical surface concentration. A NPY variant with a distorted alpha-helix interacts with the surface as strongly as the natural NPY but expands the monolayers more. This suggests that the helix motif in the peptide is more important for the interaction with the receptor than for binding of the peptide to the membrane surface. In context, these observations attribute a specific role to the membrane in funneling the signal peptide to its membrane receptor.  相似文献   

16.
We have concurrently studied the surface pressure (pi) versus area (A) isotherms and microscopic surface morphological features of Langmuir monolayers of diethylene glycol mono-n-octadecyl ether (C18E2) by film balance and Brewster angle microscopy (BAM) over a wide range of temperature. At temperatures < or =10 degrees C, the monolayers exist in the form of condensed phase even just after the evaporation of the spreading solvent, suggesting that the melting point of the condensed phase is above this temperature. At > or =15 degrees C, the monolayers can exist as gas (G), liquid expanded (LE), and liquid condensed (LC) phases and undergo a pressure-induced first-order phase transition between LE and LC phases showing a sharp cusp point followed by a plateau region in the pi-A isotherms. A variety of 2-D structures, depending on the subphase temperature, are observed by BAM just after the appearance of the cusp point. It is interesting to note here that the domains attain increasingly large and compact shape as the subphase temperature increases and finally give faceted structures with sharp edges and corners at > or =30 degrees C. The BAM observations were coupled with polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) to gain better understanding regarding the conformational order and subcell packing of the molecules. The constancy of the methylene stretching modes over the studied temperature range suggests that the hydrocarbon chains do not undergo any conformational changes upon compression of the monolayer. However, the full width at half-maximum (fwhm) values of the asymmetric methylene stretching mode (nu(as)(CH(2))) are found to respond differently with changes in temperature. It is concluded that even though the trans/gauche ratio of the hydrocarbon chains remains virtually constant, the LE-LC phase transition upon compression of the monolayer is accompanied by a loss of the rotational freedom of the molecules.  相似文献   

17.
Self-assembly of poly(ethylene oxide)-block-poly(epsilon-caprolactone) five-arm stars (PEO-b-PCL) was studied at the air/water (A/W) interface. The block copolymers consist of a hydrophilic PEO core with hydrophobic PCL chains at the star periphery. All the polymers have the same number of ethylene oxide repeat units (9 per arm), and the number of epsilon-caprolactone repeat units ranges from 0 to 18 per arm. The Langmuir monolayers were analyzed by surface pressure/mean molecular area isotherms, compression-expansion hysteresis experiments, and isobaric relaxation measurements, and the Langmuir-Blodgett (LB) films' morphologies were investigated by atomic force microscopy (AFM). PCL homopolymers crystallize directly at the A/W interface in a narrow surface pressure range (11-15 mN/m). In the same pressure region, the star-shaped block copolymers undergo a phase transition corresponding to the collapse and the crystallization of the PCL chains as shown by the presence of a pseudoplateau in the isotherms. The LB films were prepared by transferring the Langmuir monolayers onto mica substrates at various surface pressures. AFM imaging confirmed the formation of PCL crystals in the LB monolayers of the PCL homopolymers and of the copolymers, but also showed that the PCL segments can undergo additional crystallization after monolayer transfer during water evaporation. The PCL crystal morphologies were also strongly influenced by the surface pressure and by the PEO segments.  相似文献   

18.
The kinetics and the thermodynamics of melanin concentrating hormone (MCH) adsorption, penetration, and mixing with membrane components are reported. MCH behaved as a surface active peptide, forming stable monolayers at a lipid-free air-water interface, with an equilibrium spreading pressure, a collapse pressure, and a minimal molecular area of 11 mN/m, 13 mN/m, and 140 A (2), respectively. Additional peptide interfacial stabilization was achieved in the presence of lipids, as evidenced by the expansion observed at pi > pi sp in monolayers containing premixtures of MCH with zwitterionic or charged lipids. The MCH-monolayer association and dissociation rate constants were 9.52 x 10 (-4) microM (-1) min (-1) and 8.83 x 10 (-4) min (-1), respectively. The binding of MCH to the dpPC-water interface had a K d = 930 nM at 10 mN/m. MCH penetration in lipid monolayers occurred even up to pi cutoff = 29-32 mN/m. The interaction stability, binding orientation, and miscibility of MCH in monolayers depended on the lipid type, the MCH molar fraction in the mixture, and the molecular packing of the monolayer. This predicted its heterogeneous distribution between different self-separated membrane domains. Our results demonstrated the ability of MCH to incorporate itself into biomembranes and supports the possibility that MCH affects the activity of mechanosensitive membrane proteins through mechanisms unrelated with binding to specific receptors.  相似文献   

19.
The characteristic features of hydroxystearic acid monolayers OH-substituted in the mid position of the alkyl chain deviate considerably from those of the usual nonsubstituted stearic acid. The phase behavior, domain morphology, and two-dimensional lattice structure of 9-, 11-, and 12-hydroxystearic acids are studied, using pi-A isotherms, Brewster angle microscopy (BAM), and grazing incidence X-ray diffraction (GIXD), to obtain detailed information on the effect of the exact position of the OH-substitution. The pi-A isotherms of all three hydroxyoctadecanoic acids have an extended flat plateau region, the extension of which only slightly decreases with the increase of temperature. At the same temperature, the extension of the plateau region increases and the plateau pressure decreases from 9-hydroxyoctadecanoic acid to 12-hydroxyoctadecanoic acid. The absolute -DeltaH and -DeltaS values for the phase transition increase slightly from 9-hydroxyoctadecanoic acid to 12- hydroxyoctadecanoic acid and indicate differences in the ordering of the condensed phase under consideration of the special reorientation mechanism of these bipolar amphiphiles at the fluid/condensed phase transition. The morphology of the condensed phase domains formed in the fluid/condensed coexistence region is specific for the position of the OH-substitution of the alkyl chain, just as the lattice structures of the condensed monolayer phase. 11-hydroxyoctadecanoic acid monolayers form centered rectangular lattices with the chain tilt toward the NNN (next nearest neighbor) direction, and 12-hydroxyoctadecanoic acid monolayers have an oblique lattice over the entire pressure range. A special feature of 9-hydroxystearic acid monolayers is the phase transition between two condensed phases observed in the pi-A isotherm of 5 degrees C at approximately 18 mN/m, where the centered rectangular lattice shows a NNN/NN transition. The morphology of the condensed phase domains formed in the fluid/condensed coexistence region, just as the lattice structures of the condensed monolayer phase, reveal the high specifity of the monolayer feature of the bipolar hydroxystearic acids OH-substituted in the mid position.  相似文献   

20.
Dipalmitoyl phosphatidylcholine (DPPC), one of the main constituents of lung surfactant is mainly responsible for reduction of surface tension to near 0 mN/m during expiration, resisting alveolar collapse. Other unsaturated phospholipids like palmitoyloleoyl phosphatidylglycerol (PG), palmitoyloleoyl phosphatidylcholine (POPC) and neutral lipids help in adsorption of lung surfactant to the air-aqueous interface. Lung surfactant lipids may interact with plasma proteins and hematological agents flooding the alveoli in diseased states. In this study, we evaluated the effects of albumin and erythrocyte membranes on spread films of DPPC alone and mixtures of DPPC with each of PG, POPC, palmitoyloleoyl phosphatidylethanolamine (PE), cholesterol (CHOL) and palmitic acid (PA) in 9:1 molar ratios. Surface tension-area isotherms were recorded using a Langmuir-Blodgett (LB) trough at 37 degrees C with 0.9% saline as the sub-phase. In the presence of erythrocyte membranes, DPPC and DPPC+PA monolayers reached minimum surface tensions of 7.3+/-0.9 and 9.6+/-1.4 mN/m, respectively. Other lipid combinations reached significantly higher minimum surface tensions >18 mN/m in presence of membranes (Newman Keul's test, p<0.05). The relative susceptibility to membrane inhibition was [(DPPC+PG, 7:3)=(DPPC+PG, 9:1)=(DPPC+POPC)=(DPPC+PE)=(DPPC+CHOL)]>[(DPPC+PA)=(DPPC)]. The differential response was more pronounced in case of albumin with DPPC and DPPC+PA monolayers reaching minimum surface tensions less than 2.4 mN/m in presence of albumin, whereas DPPC+PG and DPPC+POPC reached minimum surface tensions of around 20 mN/m in presence of albumin. Descending order of susceptibility of the spread monolayers of lipid mixtures to albumin destabilization was as follows: [(DPPC+PG, 7:3)=(DPPC+PG, 9:1)=(DPPC+POPC)]>[(DPPC+PE)=(DPPC+CHOL)]>[(DPPC+PA)=(DPPC)] The increase in minimum surface tension in presence of albumin and erythrocyte membranes was accompanied by sudden increases in compressibility at surface tensions of 15-30 mN/m. This suggests a monolayer destabilization and could be indicative of phase transitions in the mixed lipid films due to the presence of the hydrophobic constituents of erythrocyte membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号